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The question of what is the pairing mechanism responsible 
for high Tc superconductivity will be decided experimentally.

However, we should be able to understand the pairing 
interaction for models such as the Hubbard and t-J 
models which exhibit properties similar to the cuprates.

But even among those who believe that these models 
contain much of the essential physics of the cuprates,  
there are different views regarding the nature of the 
pairing interaction. 
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The spin fluctuation approach 
focuses on the AF and pictures
these fluctuations as mediating
the superconductivity in the doped 
system.

RVB postulates a liquid of spin singlets
from which superconductivity arises.

“The Resonating Valence Bond State in 
La2CuO4 and Superconductivity”
P.W. Anderson, Science 235,1196 (1987)
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Spin-fluctuation exchange mechanism

K. Miyake, S. Schmitt-Rink and C. Varma,  PRB 34, 6554 (1986)

D. Scalapino, E. Loh, Jr., J. Hirsch, PRB 34, 8190 (1986)
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Bickers, Scalapino and White PRL (1989)

AF

U/t=4
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P.W. Anderson  Science 2007

“we have a mammoth and an elephant in our refrigerator---
do we care much if there is also a mouse?”
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Γpp ≈ J(coskx − cosky)(cosk′
x − cosk′

y)

J = 4t2/U

with the dynamics of J set by the Mott scale U

the interaction is non-retarded and one would not 
speak of a “glue”.

If RVB
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If         has a frequency dependence like the spin 
susceptibility, it is retarded and one could say that spin-
fluctuations provide the pairing “glue”.

Γpp

Γpp(k,ω; k′,ω
′
) ≈

3
2
Ū2χ(k − k′,ω − ω

′
)
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DCA   T. Maier et al , Rev Mod Phys 77, 10271 (2005)

C-DMFT  G. Kotliar et al, Rev Mod Phys 78, 865 (2006)

Numerical results
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The Hubbard Model

H = −t
∑

<i,j>σ

(c†iσcjσ + c†jσciσ) + U
∑

i

ni↑ni↓

↑↓ ↑U
t

=1-xU/t n
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The effective pairing interaction is given by the 
irreducible particle-particle vertex

Γpp(k′; k)

k

-k

k’

-k’

Here k=(k,i     ).  The momentum transfer is k’-k and 
the Matsubara energy transfer is 

ωn
.iωn′ − iωn
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The momentum / spatial structure of 
the pairing interaction
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q

q

x

y

Γ
pp

(q = p − p )

The momentum dependence of               is shown 
schematically.  The numerical data that I’ll show is 
for points along qx=qy, with q=k’-k, and

The Momentum Dependence
Γpp(k′, k)

Γpp(q = k′ − k)

ωn = −ωn′ = πT.
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Figure 25: (a) The irreducible particle-particle vertex Γpp
e versus q = K − K′ for various

temperatures with ωn = ωn′ = πT . Here, K = (π, 0) and K′ moves along the momentum
values of the 24-site cluster which lay on the dashed line shown in the inset of Fig. 23. Note
that the interaction increases with the momentum transfer as expected for a d-wave pairing
interaction. (b) The q-dependence of the fully irreducible two-fermion vertex ∧irr. (c) The
q-dependence of the charge density (S = 0) channel 1

2Φd for the same set of temperatures.
(d) The q-dependence of the magnetic (S = 1) channel 3

2Φm. (Maier et al. [33])

The subscripts d and m denote the charge density (S = 0) and magnetic (S = 1) particle-hole

channels respectively, with

Φd/m(p′, p) =
1

2

[

Γd/m(p′ − p; p,−p′) − Γph
d/m(p′ − p; p,−p′)

+ Γd/m(p′ + p;−p,−p′) − Γph
d/m(p′ + p;−p,−p′)

]

(51)

Here, on the right hand side, the center of mass and relative wave vectors and frequencies in

these channels are labeled by the first, second and third arguments, respectively.

Results for the irreducible particle-particle interaction Γpp
e obtained from the 24-site dy-

Γpp

Maier et al PRL 06

<n>=0.85
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Figure 3 - Effective interaction for spin fluctuation mediated pairing (antiferromagnetic 

case).  Left panel is for momentum space (a repulsive potential peaked at q=(!,!)), right 

panel for real space (repulsive potential on-site, attractive potential for a near neighbor 

separation). 
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Figure 4 - Electronic structure of the layered cuprates.  The copper d and oxygen p levels 

hybridize, resulting in a partially filled antibonding band.  A Mott gap due to Coulomb 

correlations splits this band, leading to the formation of an upper Hubbard band and a 

lower Hubbard band, with the chemical potential, µ, inside this gap for zero doping. 
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The structure of the pairing interaction
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Figure 21: The even irreducible particle-
particle vertex Γpp

e (q, ωm = 0) for q = p′ −p

and p = (π, 0) versus momentum transfer q

along the (1, 1) direction. Here U = 4t and
〈n〉 = 0.875. As the temperature decreases
below the temperature where spin-spin cor-
relations develop, the strength of the interac-
tion is enhanced at large momentum trans-
fers. (Bulut et al. [32])

Figure 22: The real-space structure of
Γpp

e (R) at a temperature T = 0.25t for U =
4t and 〈n〉 = 0.87. When the singlet elec-
tron pair is separated by one lattice spac-
ing, R = x or y, the interaction is attractive,
while it is strongly repulsive when R = 0
and the pair occupy the same site. (Bulut et
al. [32])

The temperature dependence of the leading eigenvalue in the particle-particle channel is

plotted versus the temperature in Fig. 23. When this eigenvalue reaches 1, it signals an

instability into a superconducting phase. Here, U = 4t with 〈n〉 = 0.85 and we are showing

results obtained using the dynamic cluster approximation [33] for the 24-site k-cluster dis-

cussed in Section 3. The distribution of k points for the 24-site cluster is shown in the inset

of Fig. 23. Similar results for T ≥ 0.25t have been obtained using the determinantal Monte

Carlo algorithm on an 8×8 lattice. [32]

The eigenfunction corresponding to the leading particle-particle eigenvalue is a singlet

and its K dependence, plotted in the inset of Fig. 24, shows that it has dx2−y2 symmetry.

The frequency dependence of this eigenfunction at the antinodal point K = (π, 0) is shown

32

The dominant pairing response, at low temperatures, is found to occur in the even fre-

quency dx2−y2 channel. Since this channel is even in both the relative frequency and mo-

mentum, it must be a spin singlet. Note that there are also spin singlet pairing channels

which are odd in the relative frequency and momentum. However, the pairing instability in

the doped Hubbard model comes from the even frequency and even momentum part of the

irreducible particle-particle vertex.

Γpp
e (p′|p) =

1

2
[Γpp(p′|p) + Γpp(−p′|p)] . (46)

Determinantal quantum Monte Carlo results [32] for Γpp
e (p′|p) obtained from an 8×8 lattice

with U = 4t and 〈n〉 = 0.87 are shown in Fig. 21. Here, Γpp
e (p′|p) is plotted for various

temperatures as a function of q = p′ − p with p = (π, 0) and ωn = ωn′ = πT . One sees

that as the temperature is lowered, Γpp
e peaks at large momentum transfers. The size of the

effective pairing interaction Γpp
e also depends upon the energy transfer ωm = ωn′ − ωn, and

falls off with ωm on a scale set by the characteristic spin-fluctuation energy.

To obtain a more intuitive picture of the way in which the local repulsive Uni↑ni↓ Hubbard

interaction can lead to an effective attractive pairing interaction in the singlet channel, it is

useful to construct the real space Fourier transform

Γpp
e (R) =

1

N2

∑

p,p′

ei(p′−p)·R Γpp
e (p′, iπT ;p, iπT ) . (47)

Values for Γpp
e (R) are shown in Fig. 22, with the distance R between the two fermions

measured from the central point. If two fermions occupy the same site, spin-up and spin-

down, Γpp
e (R = 0) % 9.6t. That is, the effective pairing interaction is even more repulsive

than the bare U = 4t onsite Coulomb interaction. However, if two fermions in a singlet state

are on near-neighbor sites, the effective interaction Γpp
e (R = x̂ or ŷ) % −0.5t is attractive.

In order to determine the structure of the pairing correlations which are produced by

ΓPP
e , we turn to the homogenous Bethe-Salpeter equation

−
T

N

∑

p′

Γpp
e (p|p′) G↑(p

′) G↓(−p′) φα(p′) = λαφα(p) . (48)
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The spin dependence of the interaction
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Γpp(K, K ′) = Λirr(K, K ′) +
1
2
Φd(K, K ′) +

3
2
Φm(K, K ′)c

(Pfitzner, Wölfle, PRB ‘89; Esirgen, Bickers, 
PRB ‘98)
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Figure 25: (a) The irreducible particle-particle vertex Γpp
e versus q = K − K′ for various

temperatures with ωn = ωn′ = πT . Here, K = (π, 0) and K′ moves along the momentum
values of the 24-site cluster which lay on the dashed line shown in the inset of Fig. 23. Note
that the interaction increases with the momentum transfer as expected for a d-wave pairing
interaction. (b) The q-dependence of the fully irreducible two-fermion vertex ∧irr. (c) The
q-dependence of the charge density (S = 0) channel 1

2Φd for the same set of temperatures.
(d) The q-dependence of the magnetic (S = 1) channel 3

2Φm. (Maier et al. [33])

The subscripts d and m denote the charge density (S = 0) and magnetic (S = 1) particle-hole

channels respectively, with

Φd/m(p′, p) =
1

2

[

Γd/m(p′ − p; p,−p′) − Γph
d/m(p′ − p; p,−p′)

+ Γd/m(p′ + p;−p,−p′) − Γph
d/m(p′ + p;−p,−p′)

]

(51)

Here, on the right hand side, the center of mass and relative wave vectors and frequencies in

these channels are labeled by the first, second and third arguments, respectively.

Results for the irreducible particle-particle interaction Γpp
e obtained from the 24-site dy-

Γpp Λirr

S = 0 S = 1

Maier et al PRL 06
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Figure 25: (a) The irreducible particle-particle vertex Γpp
e versus q = K − K′ for various

temperatures with ωn = ωn′ = πT . Here, K = (π, 0) and K′ moves along the momentum
values of the 24-site cluster which lay on the dashed line shown in the inset of Fig. 23. Note
that the interaction increases with the momentum transfer as expected for a d-wave pairing
interaction. (b) The q-dependence of the fully irreducible two-fermion vertex ∧irr. (c) The
q-dependence of the charge density (S = 0) channel 1

2Φd for the same set of temperatures.
(d) The q-dependence of the magnetic (S = 1) channel 3

2Φm. (Maier et al. [33])

The subscripts d and m denote the charge density (S = 0) and magnetic (S = 1) particle-hole

channels respectively, with

Φd/m(p′, p) =
1

2

[

Γd/m(p′ − p; p,−p′) − Γph
d/m(p′ − p; p,−p′)

+ Γd/m(p′ + p;−p,−p′) − Γph
d/m(p′ + p;−p,−p′)

]

(51)

Here, on the right hand side, the center of mass and relative wave vectors and frequencies in

these channels are labeled by the first, second and third arguments, respectively.

Results for the irreducible particle-particle interaction Γpp
e obtained from the 24-site dy-

Γpp Λirr

S = 0 S = 1

Maier et al PRL 06
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Figure 25: (a) The irreducible particle-particle vertex Γpp
e versus q = K − K′ for various

temperatures with ωn = ωn′ = πT . Here, K = (π, 0) and K′ moves along the momentum
values of the 24-site cluster which lay on the dashed line shown in the inset of Fig. 23. Note
that the interaction increases with the momentum transfer as expected for a d-wave pairing
interaction. (b) The q-dependence of the fully irreducible two-fermion vertex ∧irr. (c) The
q-dependence of the charge density (S = 0) channel 1

2Φd for the same set of temperatures.
(d) The q-dependence of the magnetic (S = 1) channel 3

2Φm. (Maier et al. [33])

The subscripts d and m denote the charge density (S = 0) and magnetic (S = 1) particle-hole

channels respectively, with

Φd/m(p′, p) =
1

2

[

Γd/m(p′ − p; p,−p′) − Γph
d/m(p′ − p; p,−p′)

+ Γd/m(p′ + p;−p,−p′) − Γph
d/m(p′ + p;−p,−p′)

]

(51)

Here, on the right hand side, the center of mass and relative wave vectors and frequencies in

these channels are labeled by the first, second and third arguments, respectively.

Results for the irreducible particle-particle interaction Γpp
e obtained from the 24-site dy-

Γpp Λirr

S = 0 S = 1
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Figure 25: (a) The irreducible particle-particle vertex Γpp
e versus q = K − K′ for various

temperatures with ωn = ωn′ = πT . Here, K = (π, 0) and K′ moves along the momentum
values of the 24-site cluster which lay on the dashed line shown in the inset of Fig. 23. Note
that the interaction increases with the momentum transfer as expected for a d-wave pairing
interaction. (b) The q-dependence of the fully irreducible two-fermion vertex ∧irr. (c) The
q-dependence of the charge density (S = 0) channel 1

2Φd for the same set of temperatures.
(d) The q-dependence of the magnetic (S = 1) channel 3

2Φm. (Maier et al. [33])

The subscripts d and m denote the charge density (S = 0) and magnetic (S = 1) particle-hole

channels respectively, with

Φd/m(p′, p) =
1

2

[

Γd/m(p′ − p; p,−p′) − Γph
d/m(p′ − p; p,−p′)

+ Γd/m(p′ + p;−p,−p′) − Γph
d/m(p′ + p;−p,−p′)

]

(51)

Here, on the right hand side, the center of mass and relative wave vectors and frequencies in

these channels are labeled by the first, second and third arguments, respectively.

Results for the irreducible particle-particle interaction Γpp
e obtained from the 24-site dy-

Γpp Λirr

S = 0 S = 1

Maier et al PRL 06
Wednesday, June 24, 2009



There is another way to discuss the structure of
the pairing interaction.

The Bethe-Salpeter equation in the pairing channel is

k

-k

k’

-k’
φ(k′)Γpp(k, k′)φ(k)

k

-k
=

k = (k, iωn)
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There is another way to discuss the structure of
the pairing interaction.

The Bethe-Salpeter equation in the pairing channel is

−(T/N)
∑

k′

Γpp(k, k′)G(k′)G(−k′)φα(k′) = λαφα(k)

k = (k, iωn)

Wednesday, June 24, 2009



2

cluster problem is achieved by coarse-graining the single-
particle Green’s function, i.e. averaging G(K + k̃) over
the k̃ within a cell which converges to a cluster Green’s
function Gc(K). Consequently, the compact Feynman
diagrams constructed from Gc(K) collapse onto those of
an effective cluster problem embedded in a host which
accounts for the fluctuations arising from the hopping of
electrons between the cluster and the rest of the system.
The compact cluster quantities are then used to calculate
the corresponding lattice quantities. The pairing inter-
action is given by the irreducible part of the particle-
particle vertex

Γpp(K;K ′) ≡ Γpp(K,−K;K ′,−K ′) (5)

with K = (K,ωn). One can also use the DCA to calcu-
late the spin susceptibility χ(Q,ωn). Then, in an analo-
gous manner to Eq. (4), we introduce a d-wave coupling
strength

1
2 〈g(K)Γpp

even(K,πT ;K′,πT )g(K′)〉KK′

〈g2(K)〉K
(6)

with the even frequency, even momentum part of the irre-
ducible particle-particle vertex, Γpp

even(K,πT ;K′,πT ) =
1/2 (Γpp(K,πT ;K′,πT ) + Γpp(K,πT,−K′,−πT )) and
g(K) = (cos Kx− cos Ky). By requiring that this d-wave
coupling strength is the same at a given temperature for
the approximate interaction, Eq. (1), we obtain Ū(T )
shown in Fig. 1 for the case in which U/t = 8 and the
site filling 〈n〉 = 0.85. Here one sees that Ū is smaller
than U and decreases at lower temperatures. We will
discuss the physics that underlies this effect after we
explore how well 3

2 Ū2χ(K −K ′) represents Γpp(K;K ′).
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FIG. 1: The coupling strength Ū for U = 8t and a site filling
〈n〉 = 0.85.

III. RESULTS FOR THE PARTICLE-PARTICLE
BETHE-SALPETER EQUATION

The leading low temperature eigenvalue of the particle-
particle Bethe-Salpeter equation

− T

Nc

∑

K′

Γpp (K,−K;K ′,−K ′) χ̄pp
0 (K ′) φα(K ′) =

λαφα(K) (7)

where we coarse-grained the Green’s function legs,
χ̄pp

0 (K ′) = Nc
N

∑
k̃′ G↑(K′ + k̃′) G↓(−K′ − k̃′), accord-

ing to the DCA assumption, corresponds to an eigen-
function with d-wave symmetry. The red curve (solid
squares) in Fig. 2 shows the d-wave eigenvalue versus T
obtained from Eq. (7) with the ”exact” DCA interac-
tion Γpp. The blue curve (open circles) shows the d-wave
eigenvalue obtained from Eq. (7) when Γpp is replaced
by 3

2 Ū2χ(K − K ′). Here we are using DCA results for
χ as well as the single-particle propagator that appears
in Eq. (7). One sees that with Ū(T ) determined as dis-
cussed in Sec. 2, the temperature dependence and the
size of the d-wave eigenvalue are well accounted for by
the simple form of the interaction given by Eq. (1).
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FIG. 2: The d-wave eigenvalue versus T/t obtained from the
RPA form, Eq. (1) (green circles) and from the ”exact” DCA
interaction (red squares).

The momentum dependence of the eigenfunction ob-
tained using the approximate form of the interaction has
the same dominant (cos Kx− cos Ky) behavior as the ex-
act DCA result. Furthermore, as shown in Fig. 3, the
Matsubara frequency dependence of the DCA and the
approximate interaction are remarkably similar.

IV. CONCLUSION

By fitting Ū(T ) so that the d-wave strength of the
approximate interaction is equal to that of the ”exact”

Wednesday, June 24, 2009



-0.40

-0.20

0.00

0.20

0.40

(!,0) (0,!) (-!,0) (0,-!) (!,0)

"
(p
,i
!
T
)/
t

p

T=0.125t

φd(k, iπT )

k

Wednesday, June 24, 2009



34

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0  0.5  1  1.5  2  2.5  3

le
a
d
in

g
 e

ig
e
n
v
a
lu

e
s

T/t

Q=(!,!) magnetic

Q=(0,0) charge

Pairing d-wave

kx

k
y (!,0)

(0,!) (!,!)

Figure 23: Leading eigenvalues of the Bethe-
Salpeter equations in various channels for
U/t = 4 and a site occupation 〈n〉 = 0.85.
The Q = (π, π), ωm = 0, the S = 1 mag-
netic eigenvalue is seen to peak at low tem-
peratures. The leading eigenvalue in the
even singlet Q = (0, 0), ωm = 0 particle-
particle channel has dx2−y2 symmetry and in-
creases toward 1 at low temperatures. The
largest charge density eigenvalue occurs in
the Q = (0, 0), ωm = 0 channel and satu-
rates at a small value. The inset shows the
distribution of k-points for the 24-site clus-
ter. (Maier et al. [33])
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Figure 24: The Matsubara frequency de-
pendence of the eigenfunction φdx2−y2

(K, ωn)
of the leading particle-particle eigenvalue
of Fig. 23 for K = (π, 0) normalized
to φ(K, πT ) (red). Here, ωn = (2n +
1)πT with T = 0.125t. For compari-
son, the Matsubara frequency dependence
of the normalized magnetic spin suscepti-
bility 2χ(Q, ωm)/[χ(Q, 0) + χ(Q, 2πT )] for
Q = (π, π) versus ωm = 2mπT is also shown
(green). In the inset, the momentum de-
pendence of the eigenfunction φdx2−y2

(K, πT )
normalized to φdx2−y2

((0, π), πT ) shows its
dx2−y2 symmetry. Here, ωn = πT and the
momentum values correspond to values of K

which lay along the dashed line shown in the
inset of Fig. 23. (Maier et al. [33])

in the main part of Fig. 24. Here, φ((π, 0), ωn) has been normalized so that at ωn = πT

its value is 1. It is even in ωn as it must be for a d-wave singlet to satisfy the Pauli

principle. Also shown in this figure is the ωm-dependence of the Q = (π, π) spin susceptibility

χ(Q, ωm) normalized by (χ(Q, 0) + χ(Q, 2πT ))/2 for comparison with φ((π, 0), ωn). The

boson Matsubara frequency dependence, ωm = 2mπT , of the susceptibility is seen to interlace

with the fermion, ωn = (2n + 1)πT , dependence of the eigenfunction. The momentum and

frequency dependence of φdx2−y2
(K, ω) reflects the structure of the pairing interaction Γpp

e .

The numerical results show that Γpp
e is an increasing function of momentum transfer and is

Leading eigenvalues

<n>=0.85
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Coupling strength U/t dependence
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4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0.15  0.2  0.25  0.3  0.35  0.4

λ
d

T/t

(a) 〈n〉 = 0.90; Nc = 4 U = 4t

U = 8t

U = 12t

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

 4  5  6  7  8  9  10  11  12

λ
d

U/t

〈n〉 = 0.90; T = 0.15t; Nc = 4

(b)

FIG. 4: (a) The dx2−y2 eigenvalue λd(T ) versus T/t for U =
4t, 8t and 12t and 〈n〉 = 0.90. (b) The dx2−y2 eigenvalue
λd(T ) versus U/t for T = 0.15t and 〈n〉 = 0.90.

λd(T ) = 0.42 and the values of K lay along the dashed
line shown in Fig. 3. One clearly sees the d-wave struc-
ture of Φd. The dependence of Φd(K, πT ) for K along
the Kx axis is shown in the inset of Fig. 6. Here, one
sees that Φd(K, πT ) falls off as K moves away from the
Fermi surface towards the zone center.

We have also calculated the projection of Φd(K, πT )
on the first and second dx2−y2 crystal harmonics

di =
∑

K

gi(K)Φd(K, πT ) (9)

with g1(K) = cosKx − cosKy and g2(K) = cos 2Kx −
cos 2Ky. In table I, we list the values of d2/d1 versus
U at a filling 〈n〉 = 0.9. Here the sum in Eq. (9) is
over the entire Brillouin zone and the temperature was
adjusted so that the d-wave eigenvalue λd for each U/t
was the same (λd ≈ 0.4). If the sum over K in Eq. (9)
is restricted to values which lay along the dashed line in
Fig. 3, this ratio vanishes exactly in the 24-site cluster,
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FIG. 5: The dx2−y2 eigenvalue λd(T ) versus T/t for various
band fillings 〈n〉 for U/t = 6. The dashed line represents the
the leading eigenvalue λAF in the Q = (π, π), S = 1 particle-
hole channel at half-filling.
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FIG. 6: The dx2−y2 eigenvector Φd(K, ωn) at ωn = πT , nor-
malized to its value at K = (π, 0), versus K for U/t = 8, band
filling 〈n〉 = 0.9 and T/t = 0.22. In the main figure, the K
points move along the dashed line shown in Fig. 3. The inset
shows the behavior of Φd when K varies along the kx axis.

since g2(K) = 0 on the momenta K along the dashed
line.

U/t 4 6 8

d2/d1 0.064 0.128 0.157

TABLE I: The ratio of the second to the first crystal d-wave
harmonic projection of Φd(K, πT ) for 〈n〉 = 0.9 and λd ≈ 0.4.

The Matsubara frequency dependence of
Φd(K, ωn)/Φd(K, πT ) with K = (π, 0) is shown in
Fig. 7 for 〈n〉 = 0.9 and U/t = 4, 8 and 12. Also shown
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FIG. 9: Plot of Pd0(T ) versus T for U = 8t and 〈n〉 = 1
showing the effect of the opening of the Mott-Hubbard gap

A measure of this is given by

Pd0(T ) =
T

Nc

∑

K

Φd(K)2χ̄pp
0 (K) (13)

which is plotted in Fig. 9 for U = 8t and 〈n〉 = 1. Here
one clearly sees that as the temperature is lowered and
the Mott-Hubbard gap opens, Pd0(T ) is suppressed.

V. CONCLUSION

The cos kx − cos ky dependence of Φd(k, ωn) reflects
a pairing interaction Γpp(k|k′) which increases at large
momentum transfer k − k′, implying a spatially short-
range interaction which is repulsive for pair formation
on the same site but attractive for singlet pair forma-
tion between near-neighbor sites. The ωn dependence of
Φd(k, ωn) tells us that the pairing interaction is retarded
on a time scale set by J−1. The strength of the inter-
action is largest when U is of order the bandwidth and
increases as the system is doped towards half-filling. Of
course, with U = 8t, as 〈n〉 goes to 1, a Mott-Hubbard
gap opens and there are no holes to pair.
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FIG. 1: The single particle density of states N(ω) versus ω
for U = 8t, Nc = 15 and various values of the temperature T
for site fillings of a) 〈n〉 = 1.0, b) 〈n〉 = 0.90.

= + ΓΓ ΓppΓpp

FIG. 2: The Bethe-Salpeter equation for the particle-particle
channel showing the relationship between the four-point ver-
tex Γ and the particle-particle irreducible vertex Γpp. The
solid lines are dressed single particle Green’s functions.

T approaches Tc, the momentum and frequency depen-
dence of Φd(k, ωn) reflect the structure of the pairing in-
teraction at Tc, just as the superconducting gap function
reflects the k and ω dependence of the pairing interac-
tion in the superconducting state. Thus, while Φd(k, ωn)
is not a quantity that is directly measurable, it has a k-
dependence related to the momentum dependence of the
interaction and a Matsubara frequency dependence which
decays beyond a characteristic frequency associated with
the dynamic character of the interaction. It also has the

great advantage of depending upon one momentum and
frequency variable as opposed to the multiple momentum
and frequency variables of Γpp(k|k′).

In the following section II we review the dynamic
cluster approximation and discuss how one calculates
the dx2−y2 -wave eigenvalue λd(T ) and eigenfunction
Φd(k, ωn). Then, in Sec. III we investigate how λd(T )
depends upon U and 〈n〉. Following this, we examine
the k-dependence of Φd(k, ωn) and see how closely it fol-
lows the simple cos(kx) − cos(ky) dependence. If it were
of this form over the entire Brillouin zone, then it would
imply a strictly near-neighbor pairing interaction. Then
we turn to the ωn-dependence which reflects the dynam-
ics of the pairing interaction and study its dependence on
U . In Sec. IV, based upon the results for Φd(k, ωn), we
construct a simple separable representation of Γpp(k|k′)
and discuss the strength of the pairing interaction. Sec. V
contains our conclusions.

II. THE DYNAMICAL CLUSTER
APPROXIMATION

The Dynamical Cluster Approximation (DCA)16 maps
the bulk lattice to a finite size cluster embedded in a
self-consistent bath designed to represent the remain-
ing degrees of freedom. Short-range correlations within
the cluster are treated explicitly, while the longer-ranged
physics is described by a mean-field. By increasing the
cluster size, the DCA systematically interpolates between
the single-site dynamical mean-field result and the exact
result, while remaining an approximation to the thermo-
dynamic limit for finite cluster size.

The essential assumption is that short-range quanti-
ties, such as the single-particle self-energy Σ, and its
functional derivatives, the two-particle irreducible vertex
functions, are well represented as diagrams constructed
from a coarse-grained propagator Ḡ. To define Ḡ, the
Brillouin zone in two dimensions is divided into Nc = L2

cells of size 2π/L2. As illustrated in Fig. 3, each cell
is represented by the cluster momentum K in its center.
The coarse-grained Green function Ḡ(K) is then obtained
from an average over the N/Nc wave-vectors k̃ within the
cell surrounding K,

Ḡ(K, ωn) =
Nc

N

∑

k̃

1

iωn − ε
K+k̃

+ µ − Σc(K, ωn)
. (3)

Here the self-energy for the bulk lattice Σ(K+ k̃, ωn) has
been approximated by the cluster self-energy Σc(K, ωn).
Consequently, the compact Feynman diagrams con-
structed from Ḡ(K, ωn) collapse onto those of an effec-
tive cluster problem embedded in a host which accounts
for the fluctuations arising from the hybridization be-
tween the cluster and the rest of the system. The non-
interacting part of the effective cluster action is then de-
fined by the cluster-excluded inverse Green’s function

G−1(K, ωn) = Ḡ−1(K, ωn) + Σc(K, ωn) (4)
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The frequency dependence and the 
question of Glue.
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The dynamics is characterized by the frequency dependence 
of the gap function. Here we look at the Matsubara         
dependence of 

iωn
φd(k, iωn)
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The effective pairing interaction 
for the 2D hubbard model:

is retarded on a scale set by the dynamic        
spin susceptibility

increases at large momentum transfers 
leading to an attractive near neighbor d-
wave pairing 
is dominantly carried by a spin S=1

         particle-hole channel   
is largest for U~8t 

*

*

*
* increases as n goes towards 1.

*
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Comments on Mike Norman’s Questions

This is important because it implies that in thinking about 
the pairing interaction in Hubbard like models one should 
focus on the proximity to anti-ferromagnetism and the 
spin-fluctuations spectrum. 

There is pairing Glue in the Hubbard model and
it reflects pairing that is mediated by spin-fluctuations.
The same electrons that make up the pairs provide the
the spin-fluctuations that mediate the pairing. This is why 
the coupling to the “glue” is strong.

Spin-fluctuations provide a unified framework for thinking 
about pairing in the heavy fermions, the actinides, the 
cuprates and the Fe-pnictides.
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There will be spectroscopic signatures of                     
in the frequency dependence of               .                   ∆(k, ω)

χ
′′
(k,ω)

These signatures appear in tunneling, optical and ARPES
experiments, but in the absence of a small parameter and the 
occurrence of other phenomena, they are more difficult to 
extract than the phonon signatures in the traditional low Tc 
superconductors.
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The occurrence of  the neutron scattering pi-resonance 
arises naturally in a FLEX treatment of the Hubbard 
model.  In general it tells one that 

∆(k + Q) = −∆(k)

Collective modes

with Q the wave vector of the resonance.

I believe that a gap which changes sign suggests that the 
pairing is mediated by an electron-electron interaction.
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Spin-fluctuation calculations for the Fe superconductors
find an attractive pairing interaction in both the       (s-wave)
and       (d-wave) channels. This raises the possibility that a 
Bardasis-Schrieffer collective excitonic mode is present 
which may be seen in Raman scattering.
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W.-C. Lee, S.-C. Zhang, and C. Wu    0810.1309
D. Scalapino and T. Devereau    0904.1973

There is a possibility of a collective  Bardasis-Schrieffer 
excitonic mode in the Fe superconductors. 
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