Two Dimensionality in Conventional and Unconventional Superconductors

Warren E. Pickett, UCDavis

Acknowledgments: too many to list

Workshop on Higher Temperature Superconductivity, June 22, 2009

Part I

Electron-Phonon Coupling in 2D

"Recipe for Room Temperature Superconductivity"

Pressure as a Tool to Produce Superconductors: Elemental Metals under Pressure: $T_c=20-25K$

 $\xi_{\vec{Q}} \, = \, \sum_k \delta(\varepsilon_k) \delta(\varepsilon_{k+Q}) = V_c \int_{\mathcal{L}} \frac{d\mathcal{L}(k,Q)}{|\vec{v}_k \times \vec{v}_{k+Q}|}$

Lithium

Li: T_c up to 20 K

Y: T_c up to 20 K

Ca: T_c up to 25 K

fcc Li: strong coupling, phonon anomalies, instabilities under pressure

Akimitsu's Discovery: 2001

MgB₂, a common chemical reagent.

Searching for ferromagnetism, superconductivity at $40\ K$ was discovered

Quickly reproduced and synthesis techniques were extended by several groups

Crystal structure is simple. Quasi-2D.

Electronic structure is simple: s-p electrons.

Nagamatsu, Nakagawa, Muranaka, Zenitani, and Akimitsu, Nature **410**, 63 (2001)

Four Months Later: Puzzle Solved!

- 1. MgB₂: covalent bonds become metallic
- 2. Deformation potential *D*=13 eV/A (amazingly large for a metal)
- 3. 2D (cylinder) Fermi surfaces focus strength
- 4. Yet structure remains stable: intrinsic covalency

J. M. An and WEP, Phys. Rev. Lett. (2001)

J. Kortus et al., Phys. Rev. Lett. (2001)

Y. Kong et al., Phys. Rev. B (2001)

K.-P. Bohnen et al., Phys. Rev. Lett. (2001)

.....more.....

Y. KONG, O. V. DOLGOV, O. JEPSEN, AND O. K. ANDERSEN

PHYSICAL REVIEW B 64 020501(R)

FIG. 1. Left: Calculated phonon dispersion curves in MgB_2 . The area of each circle is proportional to the mode λ . The insets at the bottom show the two ΓA E eigenvectors (not normalized), which apply to the holes at the top of the σ bands (bond-orbital coefficients) as well as to the optical bond-stretching phonons (relative change of bond lengths). Right: $F(\omega)$ (full curve and bottom scale), $\alpha^2(\omega)F(\omega)$ (broken), and $\alpha_p^2(\omega)F(\omega)$ (dotted). See text.

Electron-Phonon Coupling: General Results for $\lambda_{Q\nu}$ and $\gamma_{Q\nu}$ P. B. Allen, PR B6, 2577 (1972)

$$\lambda = \frac{1}{N_{\nu}} \sum_{Q,\nu=1}^{N_{\nu}} \lambda_{Q,\nu} = 2 \int \frac{\alpha^{2} F(\omega)}{\omega} d\omega$$

$$\alpha^{2} F(\omega) = \frac{2}{\pi N(0)\omega} \sum_{Q\nu} \gamma_{Q\nu} \delta(\omega_{Q\nu} - \omega)$$

$$\omega_{Q\nu}^{2} = \Omega_{Q\nu}^{2} + 2\Omega_{Q\nu}^{2} Re \Pi(Q, \omega_{Q\nu})$$

$$\gamma_{Q\nu} = \frac{\Omega_{q\nu}}{\omega_{Q\nu}} Im \Pi(Q, \omega_{Q\nu})$$

$$= \pi \sum_{k} |M_{k,k+Q}|^{2} \delta(\varepsilon_{k}) \delta(\varepsilon_{k+Q})$$

$$\lambda = \frac{1}{N_{\nu}} \sum_{Q\nu} \lambda_{Q\nu} = \frac{4}{\pi N(0)} \sum_{Q\nu} \frac{\gamma_{Q\nu}}{\omega_{Q\nu}^{2}}$$

3% of phonons have $\lambda \sim 25!$ Rest of phonons have $\lambda \sim 0.3$

$$\begin{array}{lll} \lambda_{\vec{Q},\nu} & = & 4\frac{2}{\omega_{\vec{Q},\nu}} \sum_k |M_{k,k+Q}|^2 \delta(\varepsilon_k) \delta(\varepsilon_{k+Q}) \\ \\ & = & 4\frac{4\pi V_c |M|^2}{\omega_{\vec{Q},\nu} c k_F^2} \frac{1}{x\sqrt{1-x^2}}, x \equiv \frac{Q}{2k_F} \\ \\ & & \lambda_q \; \text{for Li,BC Model} \end{array}$$

Phonon Renormalization (Self Energy)

Cylinder Fermi surface leads to sharp Kohn anomaly Large matrix elements lead to strong renormalization for Q<2k_F

Extreme Electron-Phonon Coupling: Kohn Anomalies

$$\omega_{Q\nu}^2 = \Omega_{Q\nu}^2 + 2\Omega_{Q\nu}^2 \Pi(Q, \omega_{Q\nu})$$

$$\Pi(Q, \omega) = -2 \sum_{k} |M_{k,k+Q}|^2 \frac{f_k - f_{k+Q}}{\varepsilon_{k+Q} - \varepsilon_k - \omega - i\delta}$$

2D dispersion, slowly varying matrix elements give

$$\Pi_{\nu}(Q, \omega) = -2|M_{\nu}|^2 \chi_L^{2D}(Q, \omega)$$

2D Kohn Anomaly

Pinpointing of Strong Electron-Phonon Coupling

Y. KONG, O. V. DOLGOV, O. JEPSEN, AND O. K. ANDERSEN

PHYSICAL REVIEW B 64 020501(R)

FIG. 1. Left: Calculated phonon dispersion curves in MgB₂. The area of each circle is proportional to the mode λ . The insets at the bottom show the two ΓA E eigenvectors (not normalized), which apply to the holes at the top of the σ bands (bond-orbital coefficients) as well as to the optical bond-stretching phonons (relative change of bond lengths). Right: $F(\omega)$ (full curve and bottom scale), $\alpha^2(\omega)F(\omega)$ (broken), and $\alpha^2_B(\omega)F(\omega)$ (dotted). See text.

Shukla et al. Phys. Rev. Lett. (2003) Inelastic x-ray scattering measurements

3% of phonons have $\lambda \sim 25!$ Rest of phonons have $\lambda \sim 0.3$

W. Weber et al., PRL (1978)

Raman spectrum Bohnen, Heid, Renker (2002)

FIG. 1. Phonon dispersion curves for VN_{0.16} (open

Prediction of a "better MgB₂": Li_{1-x}BC

Rosner, Kitiagorodsky, WEP, Phys. Rev. Lett. (2002)

Structurally, chemically, similar to MgB₂
Semiconductor, so hole-doping is required
(de-intercalation of Li)
Deformation potential 50% larger than MgB₂
T_c =75 K (or higher) might be possible

Hole concentration x

Not so simple experimentally!

Several reports of inability to prepare Li_{1-x}BC Reports that Li_{1-x}BC is not superconducting:

Zhao, Klavins, Liu, J. Appl. Phys. (2003) Fogg, Claridge, Darling, Rosseinsky (2003)

But the Li_{1-x}BC samples are not well characterized(?).

Electron-Phonon Coupling Strength Calculated for Li_{1-x}BC

Semiconductor x=0 Simple vibrational spectrum

Metal for x=0.25

Extreme Kohn anomalies

El-Ph Coupling in MgB₂-like Systems

Mode λ_O and Total Coupling Strength λ

$$\begin{split} \lambda_Q &= \frac{2}{\pi N(0)} \frac{\gamma_Q}{\omega_Q^2} \\ \gamma_Q &= \pi \Omega_Q |g|^2 [N(0)]^2 d_b^2 \hat{\xi}(Q), \\ \hat{\xi}(Q) &= \frac{\sum_k \delta(\varepsilon_k) \delta(\varepsilon_{k+Q})}{[\sum_k \delta(\varepsilon_k)]^2} = \frac{A_{BZ}}{A_{FS}} \frac{1}{\pi} \frac{\theta(1-\eta)}{\eta \sqrt{1-\eta^2}} \\ \lambda &= \sum_{Q\nu} \lambda_{Q\nu} = d_b^2 \frac{N(0)\mathcal{D}^2}{M\omega_Q^2} \leftrightarrow \frac{N(\varepsilon_F) < I^2 >}{M < \omega^2 >} \\ &= \frac{d_b^2 N(0)\mathcal{D}^2}{M\Omega_Q^2 - d_b^2 N(0)\mathcal{D}^2}, \quad N(0) = \frac{m^*}{2\pi} \\ &= \frac{\lambda_o}{1-\lambda_o}, \quad \lambda_o \equiv \frac{d_b^2 N(0)\mathcal{D}^2}{M\Omega_Q^2} \end{split}$$

- mode λ_Q scales inversely with carrier density (A_{FS} ≡ πk_F²)
- total λ is independent of carrier density

Why Isn't MgB_2 a Higher T_c Material?

How could MgB₂ have been better? Relations to use:

$$\lambda_o \equiv \frac{d_b^2 N(0) \mathcal{D}^2}{M \Omega^2}; \quad \lambda = \frac{\lambda_o}{1 - \lambda_o}$$

$$T_c \approx \frac{\langle \omega \rangle}{4} [e^{2/\lambda_{eff}} - 1]^{-1/2}; \quad \lambda_{eff} = \frac{\lambda - \mu^*}{1 + 0.75\lambda \mu^* + 2\mu^*}$$

- Suppose Ω had been different from what it is, Ω_{AlB2} =1050 cm⁻¹.
 With other factors the same, the parent system would have been unstable if Ω = 850 cm⁻¹. Hence MgB₂ is not so far from not having existed.
- What if Ω were even bigger? λ_o and λ would be smaller but the energy/temperature scale (prefactor in T_c) would have been higher.
- What if the coupling (deformation potential D) had been larger? If D)
 were 20% larger (D² 44% larger), λ_o → 1 and MgB₂ would be unstable.

Engineering an Optimized MgB₂

An Optimized MgB_2 would have $T_c=55-60$ K

Is there some other way to win? Yes.

Make serious use of two-dimensionality in the boson coupling.

Design of higher T_c superconductors: is it viable?

Rational Design/Search for new hTS

Example of one design criterion

Select band structure to enable the phonons to use more of the Brillouin zone

Part II

Doped 2D Insulators

But: ionic band insulators, not Mott insulators

Observations about Carrier-doped Layered Transition Metal Oxides

- Electron-doped TaS₂
- Hole-doped LiNbO₂
- Hole-doped NaCoO₂ (hydrated)
- Electron-doped TiSe₂

Observation about Carrier-doped Layered Transition Metal Nitride

- Electron-doped ZrNCI, HfNCI
- Electron-doped TiNCI
- Electron-doped BaHfN₂ ???

Synopsis: T_c in 2D Triangular Oxides/Chalcogenides

Triangle Lattice Transition Metal Chalcogenides

Observations about Carrier-doped Layered Transition Metal Oxides

- Electron-doped TaS₂
- Hole-doped LiNbO₂
- Hole-doped NaCoO₂ (hydrated)
- Electron-doped TiSe₂

Observation about Carrier-doped Layered Transition Metal Nitrides

- Electron-doped ZrNCI, HfNCI
- Electron-doped TiNCI
- Electron-doped BaHfN₂ ???

Alkali-doped A_xZrNCl (15 K) & A_xHfNCl (25 K)

Superconductor-insulator transition at x=0.06

Increase in T_c upon Reduction of Doping in Li_xZrNCl Superconductors

Y. Taguchi, ^{1,2} A. Kitora, ¹ and Y. Iwasa ^{1,2}

¹Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan ²CREST, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan

PRL, 2009

FIG. 4 (color). (a) Magnetization at a field of 10 Oe (without correction for demagnetizing field) is plotted against temperature for selected samples. (b) x dependence of the supercoorducting volume fraction determined by MH measurements at 2 K (or 5 K). Imperfect correction of the demagnetizing field is the reason the estimated volume fraction exceeds 100%. (c) x dependence of T_x , exemplifying rapid increase in T_x below x = 0.12.

Insulator-superconductor transition to optimal superconducting Tc at x=0.06

Electron doping of 2D van der Walls insulator TiNCI

S Yamanaka et al. J. Mater. Chem. 19, 2573 (2009)

 T_c to 16.5K

- Structure: metallic-covalent square Ti₂N₂ layer, cladded by Ba on each side-->neutral slabs
- Intercalate with Li, Na, ... to get superconductivity?

Electron doping of 2D van der Walls insulator BaHfN₂

D. H. Gregory et al. JSSC 137, 62 (1998)

- Structure: metallic-covalent square Hf₂N₂ layer, cladded by BaN on each side-->neutral slabs
- Intercalate with Li, Na, ... to get superconductivity?

Mechanism of superconductivity in doped HfNCl, TiNCl?

Not phononic, not magnetic --> electronic.

Boson exchange: use of BZ is same as MgB₂ i.e. very far from optimal

2D plasmons: $ω_q = [(2\pi ne^2/\epsilon m^*)q]^{1/2}$

for m*=1, ϵ =9, n_{cr}=1/16 (ZrNCI): ω_q^{max} = 0.5-0.75 eV

Kohn Anomaly Surface

Doped insulator just beyond MIT: weak screening --> "charged phonons" (can have huge oscillator strengths)

Doped insulator just beyond MIT: coupled plasmon-phonon modes

?Polaronic behavior:?bipolaron pairing?

A. Bill et al.

Discussion Questions

Hirschfeld

- Eliashberg-type theory for electronic pairing?
- Atomic-scale phenomena: very important for higher Tc.
- Can DFT play a role in strongly correlated materials?
- Prospects for theory of inhomogeneous superconductivity.....
- What could 30x more computational power accomplish?