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Part |

Electron-Phonon Coupling in 2D

“Recipe for Room Temperature Superconductivity”



Pressure as a Tool to Produce Superconductors:
Elemental Metals under Pressure: T .=20-25K
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Li: T.upto 20 K
Y: T,upto20K
Ca: T.upto 25K
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Akimitsu’s Discovery: 2001

MgB,, a common chemical reagent.

Searching for ferromagnetism, 2 D

superconductivity at 40 K was discovered

Quickly reproduced and synthesis techniques
were extended by several groups

Crystal structure is simple. Quasi-2D.

Electronic structure is simple: s-p electrons.

Nagamatsu, Nakagawa, Muranaka, Zenitani, and Akimitsu,
Nature 410, 63 (2001)




1. MgB,: covalent bonds become metallic

2. Deformation potential D=13 eV/A
(amazingly large for a metal)

3. 2D (cylinder) Fermi surfaces focus strength

4. Yet structure remains stable: intrinsic covalency

J. M. An and WEP, Phys. Rev. Lett. (2001)
J. Kortus et al., Phys. Rev. Lett. (2001)

Y. Kong et al., Phys. Rev. B (2001)

K.-P. Bohnen et al., Phys. Rev. Lett. (2001)
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Electron-Phonon Coupling:
General Results for Ao, and vg,
P. B. Allen, PR B6, 2577 (1972)
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Phonon Renormalization (Self Energy)

Extreme Electron-Phonon Coupling:

Q ‘ Kohn Anomalies

0 why, = Db, + 205, 11(Q, waw)

Cylinder Fermi surface leads to
sharp Kohn anomaly Q,w) = -2 Z |.'\'!k,k+Q|2 -

Large matrix elements lead to strong K
renormalization for Q<2k

fx — fesq

Ek+Q — Sk —w — 10

2D dispersion, slowly varying matrix elements give

M.(Q,w) = —=2|M.|*x1"(Q,w)

20 Xobn Ancmaly




Pinpointing of Strong Electron-Phonon Coupling
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Critical Temperature T_ K)

Prediction of a "better MgB,": Li,_,BC

Rosner, Kitiagorodsky, WEP, Phys. Rev. Lett. (2002)

Structurally, chemically, similar to MgB,

Semiconductor, so hole-doping is required
(de-intercalation of Li)

Deformation potential 50% larger than MgB,

T, =75 K (or higher) might be possible

Not so simple experimentally!

Several reports of inability to prepare Li;_BC
Reports that Li;_, BC is not superconducting:

< / | Zhao, Klavins, Liu, J. Appl. Phys. (2003)

" Fogg, Claridge, Darling, Rosseinsky (2003)

0.2 0.3 0.4 05 (] 0.7
Hole conoentration x

But the Li;_,BC samples are not well characterized(?).



Electron-Phonon Coupling
Strength Calculated for Li,_,BC

Semiconductor x=0
Simple vibrational spectrum
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El-Ph Coupling in MgB,-like Systems

Mode Ag and Total Coupling Strength A

125 [ | |
o o 100 " "\ ; %, | Mode 7,
A — e g 7510 | 2
? TN (0) w§ 2 sof NS ; e
‘ - 5 9 ~ 25 | \\\\_______/,: 1
e = m0lglP[NOPEEQ), I A
£Q) — 2k 0(sx)d(ekr@) _ Az 1 6(1 —7) 5 ¢ — <
SeoEP " AnsTaimE £ m oo
> N(0)D? N(ep)<I?> 8 — i
A — A v — 2—,‘ < » - 3 __________ H k"
2 Aav=d; M} M<w?> § 2f ‘
Qv &
e
— dyN(0)D? N(0) = m” E: %0 "oz o4 05 08 1
MQZ, — di N(0)D?’ 27 . QQ,
A, _ @#&N@OD?
1—A," 77 1"19'(22

e mode \g scales inversely with carrier density (Aps = k%)
e total )\ is independent of carrier density



Why Isn’t MgBs a Higher T, Material?

How could MgB, have been better? Relations to use:

di N (0)D? A
)\O = b - - — °
MQ? 4 1- A,
T. =~ &[62/&” . 1]—1/2; A A—p

1 ST = 150750 + 2u*

e Suppose  had been different from what it is, Q4;5, =1050 cm~?,
With other factors the same, the parent system would have been
unstable if Q = 850 em™!. Hence MgB; is not so far from not having
existed.

e What if  were even bigger? A, and A would be smaller but the
energy/temperature scale (prefactor in T.) would have been higher.

e What if the coupling (deformation potential D) had been larger? If D)
were 20% larger (D? 44% larger), A\, — 1 and MgB, would be unstable.



Engineering an Optimized MgB,

s ~ 2 2,! :

I'_vs. &, =d, N(O)D'/MQ
Optimum T =55K at A =0.98 (A=8)
—— ————————

T_vs. Unrenormalized €2

MgB, is not far from optimal
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An Optimized MgB, would have T.=55-60K



Is there some other way to win?
Yes.

Make serious use of
two-dimensionality in the boson coupling.



Design of higher T, superconductors: is it viable?

Rational Design/Search for new hTS

Example of
one design
criterion

Select band structure
to enable the phonons
to use more of the
Brillouin zone

Electron BZ
Electron BZ
MgB,
Fermi Surface

Phonon BZ

MgB,

Kohn Anomaly
Surface




Part I

Doped 2D Insulators

But: ionic band insulators, not Mott insulators



Observations about Carrier-doped
Layered Transition Metal

= Electron-doped TasS,
» Hole-doped LiNbO,

» Hole-doped NaCoO, (hydrated)
» Electron-doped TiSe,

Observation about Carrier-doped
Layered Transition Metal Nitride

» Electron-doped ZrNClI, HfNCI
= Electron-doped TiNCI

» Electron-doped BaHfN2 27?07



Synopsis: T, in 2D Triangular Oxides/Chalcogenides

Triangle Lattice Transition Metal Chalcogenides

L NbO, ~/ [~ .

6 I { _ Na,CoO,*yH,0
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Observations about Carrier-doped
Layered Transition Metal

= Electron-doped TasS,
» Hole-doped LiNbO,

» Hole-doped NaCoO, (hydrated)
» Electron-doped TiSe,

Observation about Carrier-doped
Layered Transition Metal Nitrides

» Electron-doped ZrNClI, HfNCI
= Electron-doped TiNCI

» Electron-doped BaHfN2 27?07



Alkali-doped A,ZrNCl (15 K) & A HFNCI (25 K)

Structure is somewhat
MgB2-like; so is it
electron-phonon?

5.0

Heid & Bohnen (2006) el-ph coupling |
strength is not large enough
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Increase in T, upon Reduction of Doping in Li,ZrNCI Superconductors

Y. Taguchi,"* A. Kitora,' and Y. fwasa'?
'Instirute for Materials Research, Tohoku University, Sendat 980-8577, Japan PRL, 2009
*CREST, Japan Science and Technology Corporation, Kawagucht 332.0042, Japan
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Electron doping of 2D van der Walls insulator TiNCI

i Structure: metallic-covalent
S Yamanaka et al. J. Mater. Chem. 19, 2573 (2009)

square TioN, layer, cladded by
TC to 16.5K Ba on each side-->neutral slabs

* Intercalate with Li, Na, ... to
get superconductivity?

TiNCI




Electron doping of 2D van der Walls insulator BaHfN,

D. H. Gregory et al. JSSC 137, 62 (1998) ®  Structure: metallic-covalent

square HfsN, layer, cladded by
BaN on each side-->neutral slabs

* Intercalate with Li, Na, ... to
get superconductivity?

BaHfN2 bandstructure
S




Mechanism of superconductivity in doped HfNCI, TiNCI?

Electron BZ

Not phononic, not magnetic --> electronic.

Boson exchange: use of BZ is same as MgB,
i.e. very far from optimal

2D plasmons: (Dq=[(23'|3n62/8m*)Q]1/2

for m*=1, €=9, n_=1/16 (ZrNCl): "X = 0.5-0.75 eV

Doped insulator just beyond MIT: weak screening -->
“‘charged phonons” (can have huge oscillator strengths)

Doped insulator just beyond MIT: ?Polaronic behavior:

coupled plasmon-phonon modes ?bipolaron pairing?
A. Bill et al.



Discussion Questions

Hirschfeld

Eliashberg-type theory for electronic pairing?

Atomic-scale phenomena: very important for higher Tc.

Can DFT play a role in strongly correlated materials?
Prospects for theory of inhomogeneous superconductivity.....
What could 30x more computational power accomplish?



