
Hidden Fermi Liquid
The moral: A good low-energy 

effective theory is worth all of Monte 
Carlo with Las Vegas thrown in.

1] Shankar RNG and when it works.

2] The Ansatz

3] The “normal” case: IR power law; ARPES spectra

4] Superconductor: Optimal, coherent tunneling; The

Resonance raises its ugly head. Pockets happen!

5]  Back to “normal” strange metal: Bottleneck, 

resistivity

Philip Anderson, Princeton

KITP Higher Tc Conf, June 23, 2009



Examples of low-energy effective theories: (LEET’s):
Fermi Liquid theory, Eliashberg theory; these 
derived by ‘poor-man’s RNG” of Shankar
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Final stage
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And then one can calculate (and understand) things



How does Shankar fail? If U>W
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But this is now “hat”
space;  H=Ht-J

And then proceed as before: now we 
can calculate

PA1
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PA1 Phil Anderson, 2/28/2009



HRVB HFL



acknowledge:  doug scalapino
acp&icam (4 years ago?)
v muthukumar
phil casey
dan dessau and jake koralek
tom timusk
seamus, ali Y
and, long ago, gideon yuval

Doug asked a question:  why do 
quasiparticles work so well (in a 
sense) for the superconductor?--
yet the normal state is not a Fermi 
liquid?



the answer
because there is a Fermi liquid in the problem, 
undergoing a BCS transition;

but it’s hidden because its quasiparticles are not the 
real physical electrons.

In the “normal” state, the strange metal, the wave-
function renormalization connecting the two, Z, is zero;

When the gap opens, Z becomes finite; there is a 
coherent quasiparticle.



The Problem,again

2-particle 
continuum

Anti-bound states caused by U: 
the upper Hubbard band

We aren’t playing with a full deck!



The solution: projection

Doing cuprates without G P is like doing QED without 
renormalizing the electron mass.



IT IS FUNDAMENTAL TO transform to projected Hamiltonian 

H t − J = e iS H oe − iS = PtP + J S i ⋅ S j
i, j
∑

P = (1 − n i ,↑
i
∏ n i,↓ )

Eigenstates (ground and single-particle excitations)
Must be of the form

  

Ψ=PΦ(r1,,r2L),  so we try to find Φ variationally.
We make the obvious Hartree-Fock-BCS Ansatz:

Φ= (uk
k
∏ +vkc*k+c*−k−)Ψvacand determine the coeffic

u and v variationally,thus acquiring a set of GAP EQ

THIS IS NOT

OPTIONAL!

(EVEN IF 
PHONONS)

THIS IS NOT

OPTIONAL!

(EVEN IF 
PHONONS)

THESE EQUATIONS ARE THOSE FOR THE TRUE 
SPECTRUM: THEY DETERMINE 
THERMODYNAMICS, MAGNETIC RESPONSE, ETC



Gutzwiller projected Fermi 
sea: the ‘hidden’ FL

“Ansatz”: The unprojected low-energy states of  a 
strongly correlated (that is, with an UHB) Fermi gas can 
be chosen to be a Fermi liquid. (If no gap) That is, in 
equations:

P = (1− ni↑
i
∏ ni↓); T = tijc *iσ

ijσ
∑ c jσ ;

H = PTP; Ψ = PΦ
HΨ = EΨ  is the same as HΦ= EΦ
Φ, not Ψ,  is assumed to have Fermi Liquid
properties :  the hidden FL.



Another possibility: the hidden 
RVB

Suppose J>>PTP.  J will control the “hidden” structure, 
an RVB, “Fermi surface” is 4 point nodes which expand 
into Rice-Zhang “pockets” of Fermi surface upon doping.

Yang, Rice, Zhang ‘06 have made a good start at this 
theory, all indications are it is right (Zhou, ‘09) for well 
underdoped cases.

NOT a competitor: two different limits!  Crossover is 
challenging!
Keep Tuned! much is happening, but that is not this talk.



So,  if Φ0 is the ground state of this problem,
ckσ Φ0,k < kF and c *kσ Φ0,k > kF  create eigen - excitations
with finite amplitude Z,  if k is near a sharp  Fermi surface,  
determined by Hartree - Fock equations using projected H.
Why? - -Why not?!   Shankar' s "poor - man' s renormalization"
seems to apply - - all Fermi systems renorm to FL in shell
around FS.

(they also create pieces in the upper Hubbard band,
but these are projected away by the Hamilltonian and 
don’t mix.)

To return to the HFL:



Since the two problems are equivalent--P=P2--
these are also excitations of the real problem.

but we cannot access them directly via real

one-particle operators because Pc≠cP.

The real one-particle operators are

ˆ c i↑ = ci↑(1− ni↓ni↑) = ci↑ci↓c *i↓ = ck↑
k,k',k ''
∑ ck '↓c *k''↓

and similarly for c*P = ˆ c *

These operators will automatically keep us 
within the lower Hubbard band, so ”all” we 
need to do is to evaluate the Green’s function 
of a three-Fermion operator.



This looks like a hopeless mess but it isn’t.  
Because of the strong exclusion principle 
restrictions on momentum, and to make the 
creation of real pseudoparticles energetically 
possible, all have to be near the Fermi surface 
and travelling in the same direction.  Two factor-
izations are important:

ˆ c k↑ ≈ (
q
∑ ck−q↑ρq↓ + ck−q↓Sq

+ ) [*]

ρ and S+ are density and spin Tomonaga waves 
moving in the direction of the Fermi velocity vF

of k.  Haldane has shown that these bosons are a
valid alternative representation of a Fermi liquid.



Green’s functions of the HFL
To get spectra we have to calculate Green’s 
functions of the “hat” operators, for tunnelling

G(i,t) = 〈 ˆ c *iσ (t) ˆ c iσ (0)〉  and for ARPES 
G([ri − rj ], t) = 〈 ˆ c *σ (ri, t) ˆ c σ (rj ,0)〉

(+ the irrelevant part that goes into the upper 
Hubbard band)

The averages denoted by <> are ground 
state at T=0, or thermal at finite T.  These 
are surprisingly easy because they factorize, 
using [*] and Fermi liquid rules (spins 
independent of each other), into 

GfreeG*(t)



The effect on tunneling spectra was evaluated in 
Nature Phys 2, 626.  At absolute zero G*(t) is the 
x-ray line problem of Doniach-Sunjic, and is t-p, 
with p=2(1-x)2/8--the 2 for the 2 channels in [*].  
The final result is a power-law Fermi surface 
singularity:  

Where does this power law come from? 
Friedel’s theorem, basically: in order to change 
the number of electrons locally, you have to 
shift the phase of the whole electron gas and, 
eventually, push electrons out through the 
boundary. Via the “orthogonality catastrophe”
this causes power law corrections to wave 
function overlaps.  (Nozieres-de Dominicis, 
1969).

dI /dV ∝ω p at finite T ∝Re(AT - iω)p

To get EDC’s (I e Green’s functions) we rely on 
Huygens’ principle:



 

HuygensÕ Principle



σ(ω)∝ (iω)−1+2 p

(in the Nature Phys ref the 
exponent is wrong --stupid 
mistake by me.

Many measurements since 
1989--Timusk latest

That is, G*(t) is common to all, so the Green’s function 
in r,t space is   G0(r-vFt)G*(t).

To calculate the IR conductivity we use the simple 
bubble diagram with no vertex correction, and take      
ω>>T--both valid approximations.  Since early work of 
Schlesinger and Collins it has been known that σ is a 
power law:



MFL=1+ε, ε<<1

DOES NOT FIT

MFL=1+ε, ε<<1

DOES NOT FIT P may be protected?

PA2
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PA2 power law may be protected!
Phil Anderson, 2/28/2009



At finite T, Yuval observed that the integral 
becomes periodic in imaginary time with period 
2π/T

G *(t)∝ t−pe−Γt Here we take Γ = AT +C(k - kF)2

A is close to unity (pπ is a guess) but C is arbitrary - -
a way of adding in  the umklapp scattering rate in the HFL

only 1 arbitrary fitting 
parameter!!  --C--

finite temperature--a kluge

t−p⇒[sinh(πTt)/T]−p
This we approximate as



It is now easy to Fourier transform to get a “Doniach-
Sunjic” line shape for the EDC. Fitting to Dessau and 
Korelek’s experiments (an example next slide) Casey 
could get the parameter values in the following slide.

(the [k-kF]2 dependence came from this fit, and was a 
pleasant surprise).  In the fits red= Lorentz + arbitrary 
background, black =Casey-PWA, points =laser ARPES 
by Dessau et al.

C can be used to estimate T2 relaxation of the HFL: it 
agrees well with the I/T2 Hall effect relaxation time (a 
long-standing puzzle)





Γ:  T+ Fermi liquid; 
a bit of a surprise--
but makes sense

Philip Anderson: This is the 
most important result: these are 
params of HFL!!

Philip Anderson: This is the 
most important result: these are 
params of HFL!!



what about superconductor?
the reason for the power-law decay of G*(t) is 
the infrared catastrophe.  But with a gap, IR 
catastrophe goes away. To calculate line-
shape,we need to do Doniach-Sunjic in a 
superconductor.  Fortunately, there is a crib: 
Yanjun Ma, P R 1985. (Prola says 
citations=0!!) Phil Casey calculated a typical 
EDC and it looks like the slide:



Photoemission Spectrum for SC state

Ref: Y. Ma, PRB 32, 1472 (1985).

Philip Anderson:

Note horizontal axis should be shifted by 47mev 

Philip Anderson:

Note horizontal axis should be shifted by 47mev 



Near optimal doping, therefore, it is fairly accurate 
to calculate using only the coherent spectrum 
(PWA and Ong, 2004) and get a good simulacrum 
of tunnelling spectrum complete with universal 
asymmetry!

WITHOUT PROJECTION CAN”T EXPLAIN 
ASYMMETRY IN POINT CONTACT TUNNELLING

(WANNIER’S THEOREM)



MEAN FIELD CALCULATION OF SPECTRUM



Pan; typical opt doped



Dessau’s typical results  --shown on slide--are more like our 
prediction than previous attempts, but still not very good:  a] in 
the real data, the peaks are ragged rather than broadened--this 
must be gap inhomogeneity, as emphasized by Yazdani.
b]There’s much too big a background, at too low energy. 
What is new?
D-wave superconductivity greatly enhances the spin 
susceptibility and lowers the energy of spin fluctuations in the
general region of (π,π) (because of coherence factors). The 
system is starting to see the AF instability. (note that d-wave 
and AF help each other, not compete)
Again, the trick is to factorize the “hat” operator and thence the 
Green’s function

ˆ c iσ = ciσ ci−σ c * i−σ = ci−σ Si
− or = ciσ (1− ni−σ )



Laser-ARPES off-nodal EDCs, T = 20 Kelvin
J.D. Koralek & D.S. Dessau, et al.

OD Bi2212
Tc = 65 K

OP Bi2212



G(0,t) = 0 | ˆ c i,↑ * (t)ci,↑(0) | 0

= Gcoherent +Ginc, density +G0(0,t) 0 | Si
+(t)Si

−(0) | 0

dteiωt∫ 0| Si
+(t)Si

−(0)| 0 = χi ''(ω)= N−1 χ''(k,ω)
k
∑

The last term is the contribution from the resonance.

Since Go is sharply peaked in energy, the shape of 
the background is that of the susceptibility--see slides 
(work of Phil Casey) and the ‘hump” in optimally 
doped BISCO

ARPES is a much harder problem--but clearly, as 
observed, there will be a big increase in background 
for states which can scatter at (π,π). But--crossover 
to HRVB?







Resistivity in the strange 
metal: the bottleneck effect

There are two different dissipative processes for 
accelerated electrons.  One may be thought of as the 
decay of quasiparticles--which are what the electric 
field sees--into pseudoparticles, which are the true 
excitation spectrum.  The second is the scattering rate 
of the pseudoparticles, which are a simple Fermi liquid 
with T2 dependence.  These two processes act in series
to dissipate the momentum to the lattice.  This means 
that the slowest one controls the rate of dissipation, not 
the fastest. That is, it’s an anti-Matthiessen’s rule: the 
conductivities add, not the resistivities!  This is the 
BOTTLENECK EFFECT.



ρ=Const×(1⁄T +T0/T2)-1

=T2/(T+T0)

This magic formula fits lots of early data—
like a glove!

Note it is T2 at low T, linear with negative 
intercept at high—puzzling characteristics 
from the beginning.



Strange Metal ρ(T) comparison to polycrystalline Tl- cuprates

Data from: Y. Kubo et al., PRB 50 21 16033 (1994).



Strange Metal ρ(T) comparison to single-crystal La2-xSrxCuO4

Data from: N.E. Hussey, et al. Science 323 603-607 (2009). 



Strange Metal ρ(T) comparison to polycrystalline La2-xSrxCuO4

Data from: H. Takagi, et al. PRL 69 2975-2978 (1992).



Measure of the Hidden Fermi Liquid contribution 
to the Strange Metal Resistivity

Low values not in agreement with other data—
unique to this set

PA1
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PA1 note low values of W for superconducting samples.  further investgation finds confusing, sample-dependent results--in fact, best data 
fits already-determined T-squared parameters quite well.
Phil Anderson, 6/17/2009



Strange Metal ρ(T) Pre-factor and Residual Resistivity





remarks and conclusions
conventional perturbation theory WON”T WORK: 
analytic structure is cuts, not poles.
When we go superconducting gapping of 
Tomonagons allows
real QP’s--but tail still not integrable!  
Manipulations of diagram theory NOT legit and 
lead to mistakes(Scalapino)
It appears we now have a systematic, controlled 
formalism for Gutzwiller projection which works 
and is useful---please give it a try!!.
Same formalism can work for HRVB

important!!!
It also appears laser ARPES is fantastically 
accurate (recent data from Zhou in China 
confirms Dessau)
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