M-theory & the String Genus Expansion

David Berman
Queen Mary College
University of London
&
Malcolm Perry
DAMTP
University of Cambridge

Goal:
What is the origin of string perturbation theory?

The membrane origin of how the dilaton couples to the string world sheet.
What is String Perturbation theory?

\[Z = \sum_{\text{Topologies}} g_s^2 \int \frac{dY dX}{w(\text{worldsheet})} e^{-S[Y, \phi]} \]

Sum over topologies of the worldsheet weighted by \(g_s \).

For \(g_s < 1 \) this is a perturbative expansion in the genus.

\[\chi = 2 - 2g \]

Often written as

\[e^{-\phi X} \]

in the partition function.

where \(g_s = e^\phi \)

or

\[S_\phi = \phi X \]

in the action for each loop in field theory.
M-theory

Strong Coupling Limit of 10 string.

Its low energy effective action is 11 dimensional supergravity.

Extended objects are:

- Membrane
- Fivebrane

\[M / \text{String Relation:} \]

\[e^\phi = \left(\frac{R_{\mu\nu}}{4} \right)^{3/2} \]

Matching shown for classical solutions & dimensionally reduced world volume actions.
\[S_{m2} = \frac{1}{4g^2} \int d^3 \sigma \sqrt{g} \left(g^{ij} \partial_i X^i \partial_j X^j - 1 + \delta^{\mu\nu} \partial_i X^i \partial_j X^j \delta^{ij} G_{ijk} G_{ikl} \right) \]

\(G_{i\sigma} \) \(\{ \) Background Bosonic Fields. \\
\(G_{i\sigma} \) \(\} \)

\(X^i(\sigma) \) \ World Volume Fields

\(\gamma_{\mu\nu} \) \ Auxiliary world volume metric

Reduction of the membrane action:

Wrap the M2

\(\sigma^3 = X'' \)

Gauge Fix:

\[\gamma_{\mu\nu} = \begin{pmatrix} \tilde{\gamma}_{\mu\nu} & 0 & \cdots \\ 0 & 0 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \]
The Membrane becomes:

\[S = \frac{1}{2 \kappa_0^2} \int d^2 \sigma \sqrt{g} \left(\bar{\Phi}^{\mu} \partial_{\mu} x^I \bar{\Phi}^I - B_{I J} \epsilon^{I J K} \partial_{\mu} x^I \partial_{\nu} x^J \right) + \text{boundary terms} \]

The action of the string

without the

\[S_{\phi} = \phi X \quad \text{term} \]

Write \[S_{\phi} = \phi X \]

in M-theory variables.

\[S_{\phi} = \frac{3}{2} \phi \ln(R \sqrt{\eta}) \]

\[\ln R \eta \] seems hard to lift to the membrane.

\[X = 2d \] topological invariant

No unique lift to 3d.
Proposal:

Examine the Membrane
partition function for the

case relevant to the string:

\[S' \times \Sigma \]

\[
\text{Fixed } R_{11} \quad \text{Riemann Surface}
\]

\[
\text{of genus } g
\]

\[M_2 \text{ partition function:} \]

\[Z = \int \frac{dX \omega X}{\text{Vol} (\text{off})} e^{-S_{M_2} [X, \omega]} \]

To evaluate the measure:

1. Gauge Fix

2. Write the space of metrics
 as an orthogonal decomposition
 into Pure Diff x Physical Metric
 deformations

3. Jacobian for the above
 (introduce ghosts).

4. Integrate over Pure Diff
 cancels Vol (Diff)

5. Integrate over Moduli
 with appropriate measure.
3d Diffeos \rightarrow 2d Diffeos \times Weyl

Be careful with double dimensional reduction a la Achucarro, Kapusta & Stelle.

$$X'' = \sigma^3 + f(\sigma, \tau)$$

Recall for diffeos

$$\delta X^m = \nu^k \partial_k X^m$$

$$\Rightarrow \delta X'' = \nu^3 (\sigma, \tau)$$

$$\therefore \nu^3 (\sigma, \tau) = \delta f(\sigma, \tau)$$

$$\delta_{ij} = \phi^{-3/2} \left(e^{-f(\sigma, \tau)} \delta_{ij} + \phi^2 A_i A_j \right)$$

Case $S' \times \Sigma$, with fixed radius for the S'. The moduli are as for a Riemann surface.

The 3-d diffeos \rightarrow 2-d diffeos \times Weyl.

Weyl & Diffeos on the metric:

$$6 \gamma_{\mu \nu} = (2 \delta \sigma + \nabla^\rho \delta \sigma_\rho) \gamma_{\rho \nu} + (P_\nu \delta \sigma_\rho)$$

$$\Rightarrow (P_\nu \delta \sigma_\rho) = \frac{1}{2} \left(\nabla_\mu \delta \sigma_\nu + \nabla_\nu \delta \sigma_\mu - \delta \sigma_\mu \delta \sigma_\nu \right)$$

Also the conjugate:

$$(p^\dagger \gamma)_\mu = -2 \nabla^\nu \gamma_{\mu \nu}$$

$$\delta \gamma = \text{Weyl}$$

$$\delta \nu_\mu = \text{Diffeos}$$
Case: \(g \geq 2 \), \(p_i \) has no zero modes.

The dimension of Moduli Space is given by

\[
\text{ker}(p_i^+) = 6g - 6 = -3X
\]

The Jacobian

\[
J = (\det p_i^+p_i)^{\frac{1}{2}}
\]

Partition Function:

\[
Z = \int dX \ d^{6g-6} (\det p_i^+p_i)^{\frac{1}{2}} \frac{d\mu d\nu}{\text{Vol}(\text{AdS}_5 \times \text{Sphere})} e^{-S[X]}
\]

The measure of the moduli space integral \(d^{3g-3} \) is calculated from the norms of the quadratic differentials

\[
|| \partial \phi ||^2 = \int \sqrt{g} \left(\partial_{\mu} \phi \right)^2 \left(\partial_{\nu} \phi \right)^2 - 2 \partial_{\mu} \phi \partial_{\nu} \phi \partial_{\mu} \phi \partial_{\nu} \phi \delta \phi^2
\]

Evaluate this for \(S^1 \times \Sigma \) and write in terms of the norms of \(\Sigma \).

\[
\Rightarrow \ || \delta \phi || = \sqrt{R^2 \ || \delta \phi \||}
\]
\[d^{69-6} = (R_{\mu})^{39-3} d^{69-6} \]

\[Z = \int dX \ (R_{\mu})^{39-3} d^{69-6} \text{ln} (\text{det} P^\mu P^\nu) e^{-S} \]

Use \((R_{\mu})^{3/2} = e^\phi \)

& \(X = 2-2g \)

\[Z = \int dX \ d^{69-6} \text{ln} (\text{det} P^\mu P^\nu) e^{-S - \phi X} \]

\[S_\phi = \phi X \] is an effective action term from the membrane measure.

Remarkable: The perturbative expansion comes from the membrane measure for M-theory. As it should for M-theory, the expansion (in the small R limit) is not put by hand.
Case $g = 1 \land g = 0$.

p_1 has zero modes

"conformal Killing vectors".

Modify the measure so as not to integrate over zero modes.

$2 \gamma_{\mu \nu} = (\det^*_1 p_1^* p_1)^{1/2} \, d\nu^* d\nu$ do moduli
to not including zero modes.

This is equal to

$2 \gamma_{\mu \nu} = \frac{1}{\text{Vol} (\text{Ker} p_1)} (\det^*_1 p_1^* p_1)^{1/2} \, d\nu^* d\nu$ do moduli

Norm of the conformal Killing vectors again scales like $\sqrt{R_{\mu \nu}}$.

Thus

$\text{Vol} (\text{Ker} p_1) = R^{1/2} \text{Dim} (\text{Ker} p_1) \frac{\text{Vol} (\text{Ker} p_1)}{M_2 \, p_1}$

Recall Riemann Roch theorem:

$\text{Dim Ker} p_1^* - \text{Dim Ker} p_1 = -3X$
The measure:

\[
\frac{\mathcal{D} \sigma}{\text{Vol}(\mathcal{M})} = \frac{\mathcal{D} \tilde{\sigma}}{\text{Vol}(\mathcal{M}')} R, \\
= \frac{\mathcal{D} \tilde{\sigma}}{\text{Vol}(\mathcal{M}')} e^{-\phi x}
\]

Again the measure scales as \(e^{-\phi x} \) thus implying the effective string action

\[S_{\phi} = \phi x. \]

Discussion

This did not have to happen. The \(M/\text{string} \) relation could have been anomalous. That is although their classical actions matched their partition functions need not have.

Evidence to take the membrane seriously.

Look at other topologies \(S^3, S^{3/2}, \text{etc.} \)
Non Constant Dilaton

The dilaton need not be a constant.

The previous analysis works fine for $\phi(X)$ but not $\phi(0)$ since

$$\int \phi \, R^{(2)} \, d^2 \sigma$$

is no longer $C \propto$ and the coupling is not topological.

Note: In this case the dilaton coupling breaks K symmetry.
Are there any other topologies in 3-d that allow a similar expansion?

Need to know the moduli space or at least how the measure scales with some topological invariant.