ATLAS Higgs Results at HCP

Jianming Qian University of Michigan

Higgs Identification Workshop, Santa Barbara, December, 2012

Data Samples

2012 data taking at 8 TeV

Recorded: 21.7 fb⁻¹

Analyzed:

5.8 fb⁻¹ for ICHEP and 13 fb⁻¹ for HCP

2011 data taking at 7 TeV 5.3 fb⁻¹ recorded ~4.8 fb⁻¹ for analysis

Search Overview

High resolution channels: clean signature, full reconstruction, good mass resolution. 5.8 fb⁻¹ 2012 data today, 13 fb⁻¹ Thursday?

Channel	Mass range	Key detector	Main
	(GeV)	requirements	backgrounds
Н→γγ	110-150	photon	γγ, γϳ, ϳϳ
H→ZZ→4l	110-600	lepton	ZZ, Z+jets, top
H→bb (WH/ZH)	110-130	jets, b-tagging	W/Z+jets, top
Η $→$ ττ (ΙΙ, Ιτ _h , τ _h τ _h)	100-150	lepton, jets, ETmiss	Z+jets, jets
H→WW→lvlv	110-600	lepton, jets, ETmiss, b-veto	WW, W/Z+jets, top, Wγ
H→WW→lvqq	300-600	lepton, jets, ETmiss, b-veto	W+jets, jets
H→ZZ→llvv	200-600	lepton, ETmiss	Z+jets, ZZ, top
H→ZZ→llqq	200-600	lepton, jets, ETmiss, b-veto	Z+jets, ZZ, top

$H \rightarrow \gamma \gamma$: Discovery Results

A minimum p_0 at 126.5 GeV: $p_0 = 2 \times 10^{-6} \implies 4.5 \sigma$

The best fit signal strength:
$$\mu = \frac{\sigma \times Br}{(\sigma \times Br)_{SM}} = 1.8 \pm 0.5$$

$H \rightarrow ZZ^* \rightarrow 4l$: Discovery Results

A minimum p_0 at 125 GeV: $p_0 = 2 \times 10^{-4} \implies 3.6 \sigma$

The best fit signal strength:
$$\mu = \frac{\sigma \times Br}{(\sigma \times Br)_{SM}} = 1.4 \pm 0.6$$

H→WW*→IvIv

HCP analysis:

- 13 fb⁻¹ of 2012 data;
- 0- and 1-jet

$$\sigma(H \rightarrow WW^* \rightarrow \ell \nu \ell \nu) \approx 220 \text{ fb}$$
 (8 TeV, m_H=125 GeV)

⇒ ~2900 events in the sample

Main background:

SM WW (irreducible)
MC shape, data normalization
(Powheg, MCNLO, MCFM, ...)

Top (pair or single):

MC shape, data normalization (MCatNLO, Powheg, AcerMC,...)

WZ, W γ , W γ^* , ZZ:

MC, validated with same-sign (Powheg, Sherpa, MadGraph...)

W+jets:

Data shape and normalization

Z+jets:

MC shape, data normalization (ALPGEN, Powheg, Sherpa)

Jet Binning

Background composition varies strongly with jet multiplicity;

Signal-background ratio degrades as jet multiplicity increases.

⇒ Separate analysis for 0-, 1and 2-jets.

gg→H signal cross section in jet bin n:

Jet bin n:
$$\sigma_n = \sigma_{tot} \times f_n(MC)$$

 σ_n : NNLO+NLL calculation, f_n from MC simulation. Their uncertainties are calculated separately as (Stewart-Tackman):

$$\sigma_{n} = \sigma_{\geq n} - \sigma_{\geq n-1} \quad \Rightarrow \quad \left(\Delta \sigma_{n}\right)^{2} = \left(\Delta \sigma_{\geq n}\right)^{2} + \left(\Delta \sigma_{\geq n-1}\right)^{2}$$

$$\Delta \sigma_{\geq 0} / \sigma_{\geq 0} \sim 8\%, \quad \Delta \sigma_{\geq 1} / \sigma_{\geq 1} \sim 20\%, \quad \Delta \sigma_{\geq 2} / \sigma_{\geq 2} \sim 70\%,$$

 $\Delta\sigma_{\geq 1}/\sigma_{\geq 1}$ and $\Delta\sigma_{\geq 2}/\sigma_{\geq 2}$ are currently calculated using fixed order program.

Due to large pileups in 2012, only $e\mu$ final state has been analyzed 6 categories: $(e\mu, \mu e) \otimes (0$ -jet, 1-jet, 2-jet)

- Separate final states depending on leading leptons;
- 2-jet analysis is ongoing

Preselection:

- $-p_T^{\ell_1,\ell_2} > 25,15 \text{ GeV with } |\eta| < 2.5;$
- $-E_{T,\text{Rel}}^{\text{miss}} > 25 \text{ GeV};$
- Jets: $p_T > 25$ GeV and $|\eta| < 2.5$ otherwise $p_T > 30$ GeV

$$E_{T,\text{Rel}}^{\text{miss}} = \begin{cases} E_{T}^{\text{miss}} & \Delta\phi \ge \pi/2 \\ E_{T}^{\text{miss}} \sin \Delta\phi & \Delta\phi < \pi/2 \end{cases}$$
$$\Delta\phi = \min \left\{ \Delta\phi \left(\vec{E}_{T}^{\text{miss}}, \ell/\text{jets} \right) \right\}$$

Significant background remains after pre-selection, apply topological selections for further background reduction:

$$\begin{array}{ll} \textbf{0-jet selections} & -p_T^{\ell\ell} > 30 \text{ GeV}; \\ -m_{\ell\ell} < 50 \text{ GeV}; \\ -\Delta\phi_{\ell\ell} < 1.8 \end{array} \Rightarrow \text{Focus on low mass region.}$$

Similar for 1-jet analysis, with additional b-jet veto

Non-WW dibosons (WZ/ZZ/W γ) and Z/DY:

Diboson: real leptons, real ETmiss; Z/DY: real lepton, fake or real ETmiss Both normalization and m_T shape from MC

W+jets:

Fake leptons, real ETmiss: both normalization and m_T shape from data

Non-WW dibosons and W+jets processes contribute to both sameand opposite-sign dilepton events ⇒ validation with same-sign events

WW and backgrounds: real leptons and real ETmiss Normalization from data and m_T shape from MC

Estimating WW and top background from data:

$$N_{S.R.}^{est.} = \left(\frac{N_{S.R.}}{N_{C.R.}}\right)_{MC} \times N_{C.R.}^{Data} = \alpha_{MC} \times N_{C.R.}^{Data}$$

Scaling using data control regions (C.R.):

WW : $m_{\ell\ell} > 80 \text{ GeV}$;

Top: reverse b-jet veto

The transverse mass as the final discriminant

125 GeV: $0.75m_H < m_T < m_H$ (illustration only)

	Signal	WW	$WZ/ZZ/W\gamma$	$t\bar{t}$	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
H+ 0-jet	45 ± 9	242 ± 32	26 ± 4	16 ± 2	11 ± 2	4 ± 3	34 ± 17	334 ± 28	423
<i>H</i> +1-jet	18 ± 6	40 ± 22	10 ± 2	37 ± 13	13 ± 7	2 ± 1	11±6	114 ± 18	141

⇒ Significant excess over estimated background!

Systematic Uncertainties

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	13	-
1-jet incl. ggF signal ren./fact. scale	10	-
PDF model (signal only)	8	-
QCD scale (acceptance)	4	-
Jet energy scale and resolution	4	2
W+jets fake factor	-	5
WW theoretical model	-	5
Source (1-jet)	Signal (%)	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	26	-
2-jet incl. ggF signal ren./fact. scale	15	-
Parton shower/ U.E. model (signal only)	10	-
b-tagging efficiency	-	11
PDF model (signal only)	7	-
QCD scale (acceptance)	4	2
Jet energy scale and resolution	1	3
W+jets fake factor	-	5
WW theoretical model	-	3

"Theoretical" uncertainties on the signal already dominate in this channel. Need your help to bring them down!

p-value of background only hypothesis:

Observed:
$$p_0 = 4 \times 10^{-3} \ (2.6\sigma)$$
; Expected: $p_0 = 0.03 \ (1.9\sigma)$

Fitted signal strength at 125 GeV:

$$\mu = \frac{\sigma \times Br}{\left(\sigma \times Br\right)_{SM}} = 1.48^{+0.35}_{-0.33} \left(\text{stat}\right)^{+0.41}_{-0.36} \left(\text{syst theory}\right)^{+0.28}_{-0.27} \left(\text{syst expt}\right) \pm 0.05 \left(\text{lumi}\right)$$

$H \rightarrow b\overline{b}$

H→bb has the largest branching ratio at low mass,

$$Br(H \to b\overline{b}) = 57.7\%$$
 @ $m_H = 125 \text{ GeV}$

but suffers from overwhelming backgrounds in the dominant ggF and VBF productions without a leptonic signature

Exploring the leptonic decays of W/Z bosons of the associated production, analyzing three different final states

0 lepton: $ZH \rightarrow vvb\overline{b}$

1 lepton: $WH \rightarrow \ell v b \bar{b}$

2 leptons: $ZH \rightarrow \ell\ell b\bar{b}$

Events in 13 fb⁻¹ at 8 TeV

 $ZH \rightarrow vvb\overline{b}$: 590 events

 $WH \rightarrow \ell v b \overline{b}$: 1130 events

 $ZH \rightarrow \ell\ell b\bar{b}$: 200 events

H → bb Backgrounds

W/Z+jets:

shape from simulation, normalization from data (Powheg, ALPGEN, Sherpa, ...)

Top pair and single top:

shape from simulation, normalization from data (MC@NLO, AcerMC, ...)

Diboson (WW/WZ/ZZ):

both shape and normalization from simulation (Herwig, Powheg, ...)

Multijets:

Data-driven methods

Categorization to take advantage of different S/B ratios:

- 3 E_T^{miss} categories for ZH $\rightarrow vvb\bar{b}$: 120–160, 160–200, >200 GeV
- 4 p_T^W categories for WH $\to \ell v b \bar{b} : 0-50, 50-100, 100-200, >200 \text{ GeV};$
- 4 p_T^Z categories for ZH $\to \ell \ell b \bar{b} : 0-50, 50-100, 100-200, >200 \text{ GeV};$

$H \rightarrow b\overline{b}$: Selections

Pre-selection:

two b-tagged jets in all three final states

Object	0-lepton	1-lepton	2-lepton
Lantons	0 loose leptons	1 tight lepton	1 medium lepton
Leptons		+ 0 loose leptons	+ 1 loose lepton
	2 b-tags	2 b-tags	2 b-tags
Jets	$p_{\rm T}^1 > 45 {\rm \ GeV}$	$p_{\rm T}^1 > 45 {\rm GeV}$	$p_{\rm T}^1 > 45 {\rm GeV}$ $p_{\rm T}^2 > 20 {\rm GeV}$
jets	$p_{\rm T}^1 > 45 {\rm GeV}$ $p_{\rm T}^2 > 20 {\rm GeV}$	$p_{\rm T}^1 > 45 {\rm GeV}$ $p_{\rm T}^2 > 20 {\rm GeV}$	$p_{\rm T}^2 > 20 {\rm \ GeV}$
	$+ \le 1$ extra jets	+ 0 extra jets	-
Missing E_T	$E_{\rm T}^{\rm miss} > 120~{\rm GeV}$	-	$E_{\rm T}^{\rm miss} < 60~{ m GeV}$
Wissing LT	$p_{\rm T}^{\rm miss} > 30~{\rm GeV}$		
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) < \pi/2$		
	$Min[\Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet})] > 1.5$		
	$\Delta \phi(E_{\rm T}^{\rm miss}, b\bar{b}) > 2.8$		
Vector Boson	-	$m_{\mathrm{T}}^{W} < 120 \; \mathrm{GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$

Category-dependent selections

0-lepton channel								
$\overline{E_{\mathrm{T}}^{\mathrm{miss}}}$ (GeV)	120	0-160	160	160-200				
$\Delta R(b, \bar{b})$	0.7	7-1.9	0.7	-1.7	<1.5			
1-lepton channel								
$p_{\mathrm{T}}^{W}\left(\mathrm{GeV}\right)$	0-50	50-100	100-150	150-200	>200			
$\Delta R(b, \bar{b})$		>0.7	7	0.7-1.6	<1.4			
$\overline{E_{\mathrm{T}}^{\mathrm{miss}}}$ (GeV)			> 25		> 50			
$m_{\mathrm{T}}^{W}(\mathrm{GeV})$		> 4()	-				
2-lepton channel								
$p_{\mathrm{T}}^{\mathrm{Z}}(\mathrm{GeV})$	0-50	50-100	100-150	150-200	>200			
$\Delta R(b, \bar{b})$		>0.7	7	0.7-1.8	<1.6			

$H \rightarrow bb: W/Z+jets$

W/Z+(light, b, c)-jets normalizations determined from data control regions (pre-tagged, 1-tagged, ...) through template fitting;

Shapes of individual components from MC simulations;

Correct MC predictions using rescaling factors.

	$\sqrt{s} = 8 \text{ TeV}$
Z + c	0.71 ± 0.23
Z+ light	0.98 ± 0.11
W + c	1.04 ± 0.24
W+ light	1.01 ± 0.14

	$\sqrt{s} = 8 \text{ TeV}$
Top	1.29 ± 0.16
Z + b	1.11 ± 0.15
W + b	0.79 ± 0.20

$H \rightarrow b\overline{b}$: Yields

Signal-background ratio ~ 1-3%

	0-lej	pton, 2 je			pton, 3 je	et		1-lepton			2-lepton					
Bin			$E_{ m T}^{ m miss}$	[GeV]					$p_{\mathrm{T}}^{W}[\mathrm{GeV}]$]				$p_{\mathrm{T}}^{Z}[\mathrm{GeV}]$]	
	120-160	160-200	>200	120-160	160-200	>200	0-50	50-100	100-150	150-200	> 200	0-50	50-100	100-150	150-200	>200
ZH	2.9	2.1	2.6	0.8	0.8	1.1	0.3	0.4	0.1	0.0	0.0	4.7	6.8	4.0	1.5	1.4
WH	0.8	0.4	0.4	0.2	0.2	0.2	10.6	12.9	7.5	3.6	3.6	0.0	0.0	0.0	0.0	0.0
Тор	89	25	8	92	25	10	1440	2276	1120	147	43	230	310	84	3	0
W + c,light	30	10	5	9	3	2	580	585	209	36	17	0	0	0	0	0
W + b	35	13	13	8	3	2	770	778	288	77	64	0	0	0	0	0
Z + c, light	35	14	14	8	5	8	17	17	4	1	0	201	230	91	12	15
Z + b	144	51	43	41	22	16	50	63	13	5	1	1010	1180	469	75	51
Diboson	23	11	10	4	4	3	53	59	23	13	7	37	39	16	6	4
Multijet	3	1	1	1	1	0	890	522	68	14	3	12	3	0	0	0
Total Bkg.	361	127	98	164	63	42	3810	4310	1730	297	138	1500	1770	665	97	72
	± 29	± 11	± 12	± 13	± 8	± 5	± 150	± 86	± 90	± 27	± 14	± 90	± 110	± 47	± 12	± 12
Data	342	131	90	175	65	32	3821	4301	1697	297	132	1485	1773	657	100	69

m_{bb} as the final discriminant, typical mass resolution ~20%

Diboson Production

WZ/ZZ production with Z→bb have the similar signature as the signal, but with 5x the rate;

Perform the similar analysis to validate the search, observe clear excess with a significance of 4.0σ and a signal strength 1.05 ± 0.32 .

H → **bb**: Systematics

Dominated by experimental systematics:

b- and c-jet tagging, pileup, jets and Etmiss, ...

Major theoretical uncertainties are

Higgs pT spectrum, MC modeling, ...

Background uncertainties

Systematic [%]	0 lepton	1 lepton	2 leptons
b-tagging	6.5	6.0	6.9
c-tagging	7.3	6.4	3.6
light tagging	2.1	2.2	2.8
Jet/Pile-up/ $E_{\rm T}^{\rm miss}$	20	7.0	5.4
Lepton	0.0	2.1	1.8
Top modelling	2.7	4.1	0.5
W modelling	1.8	5.4	0.0
Z modelling	2.8	0.1	4.7
Diboson	0.8	0.3	0.5
Multijet	0.6	2.6	0.0
Luminosity	3.6	3.6	3.6
Statistical	8.3	3.6	6.6

Signal uncertainties

Systematic [%]	0 le	pton	1 lepton	2 leptons
	ZH	WH	WH	ZH
b-tagging	8.9	9.0	8.8	8.6
c-tagging	0.1	0.1	0.0	0.1
light tagging	0.0	0.0	0.1	0.3
Jet/Pile-up/ $E_{\mathrm{T}}^{\mathrm{miss}}$	19	25	6.7	4.2
Lepton	0.0	0.0	2.1	1.8
$H \rightarrow bb$ BR	3.3	3.3	3.3	3.3
VH p_T -dependence	5.3	8.1	7.6	5.0
VH theory PDF	3.5	3.5	3.5	3.5
VH theory scale	1.6	0.4	0.4	1.6
Luminosity	3.6	3.6	3.6	3.6

H→bb: Results

No significant excesses are observed:

95% CL limit at 125 GeV 1.8 (1.9) x SM observed (expected); p-value of background only hypothesis: 0.64 (0.15)

Signal strength:

$$\mu = \frac{\sigma \times Br}{\left(\sigma \times Br\right)_{SM}} = -0.4 \pm 0.7 \text{(stat)} \pm 0.8 \text{(syst)}$$

$H \rightarrow \tau \tau$

An important search channel at low mass, likely the only final state for Higgs-lepton coupling measurements for a while.

Three search final states depending on tau decays:

$$H \rightarrow \tau\tau \rightarrow \ell\ell + 4\nu \ (12\%)$$

$$H \rightarrow \tau\tau \rightarrow \ell \tau_h + 3\nu$$
 (46%)

$$H \rightarrow \tau\tau \rightarrow \tau_h \tau_h + 2\nu$$
 (42%)

Hadronic tau identification:

One or three charged tracks;

Collimated calorimeter energy deposits;

BDT with calorimeter and tracking variables

Major backgrounds:

 $Z(\rightarrow \tau\tau)$ +jets, estimated using embedding method Multijets, estimated using same-sign events.

$H \rightarrow \tau \tau$: MMC

Tau pair mass $(m_{\tau\tau})$ as the final signal-background discriminant, reconstructed through the Missing Mass Calculator (MMC)

- Advanced version of collinear approximation method;

Take into account tau decay kinematics:

Neutrinos and visible tau decay have non-zero angle

- Under-constrained system
 - ⇒ choose the solution with the maximum likelihood

Resolution 13-20%, depending on decay mode.

H→ττ: Embedding

 $Z \rightarrow \tau \tau$ is the most dominant background for all $H \rightarrow \tau \tau$ searches, its contribution is estimated from the Z→µµ data through

embedding

select Z→μμ candidates in data;

- remove muon tracks and their expected calorimeter energy deposits from the events;
- replace them by simulated tau decay products;
- re-run the full event reconstruction
- \Rightarrow All except τ decays are from data!

MC does a decent job...

H→ττ: Categorization

Dividing analysis into different categories to improve sensitivity

Lepton-lepton final state:

- VBF topology: 2 jets, Δη(jj)>3, m(jj)>400 GeV;
- WH/ZH topology: 2 jets, Δη(jj)<2, 30<m(jj)<160 GeV
- Boosted topology: pT(ττ)>100 GeV
- 1-jet analysis: m(ττj)>225 GeV

Lepton-hadron final state:

- VBF topology: Δη(jj)>3, m(jj)>500 GeV;
- Boosted topology: pT(ττ)>100 GeV;
- 1-jet analysis: exact one jet with pT>30 GeV
- 0-jet analysis: no jet with pT>30 GeV;

Hadron-hadron state:

- VBF topology: Δη(jj)>2.6, m(jj)>350 GeV
- Boosted: $pT(\tau) > 70 \text{ GeV}$, $\Delta R(\tau 1, \tau 2) < 1.9$

Η→ττ: Selections

These are very complicated analyses....

Lepton centrality and CJV

Lepton-lepton

S/B ratio:

5-10% for VBF <~1% for the rest (integrated over whole mass range)

2-jet VBF	Boosted	2-jet VH	1-jet						
Pre-	Pre-selection: exactly two leptons with opposite charges								
30	$GeV < m_{\ell\ell} < 75 GeV$ ($30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV})$							
for same-fi	lavor (different-flavor) l	eptons, and $p_{T,\ell 1} + p_{T,\ell 2} > 3$	5 GeV						
At least	one jet with $p_T > 40$ G	$\text{deV}(JVF_{\text{jet}} > 0.5 \text{ if } \eta_{\text{jet}} < 2.5 $	2.4)						
$E_{\rm T}^{\rm miss} > 40~{ m Ge}$	$eV (E_T^{miss} > 20 \text{ GeV}) \text{ fo}$	r same-flavor (different-flavo	or) leptons						
	$H_{\rm T}^{\rm miss} > 40$ GeV for	same-flavor leptons							
	0.1 < 2	$x_{1,2} < 1$							
	$0.5 < \Delta c$	$\phi_{\ell\ell} < 2.5$							
pm = 25 GeV (IVE)	excluding 2-jet VBF	n= = > 25 GeV (IVF)	excluding 2-jet VBF,						
$p_{T,j2} > 25 \text{ GeV (JVF)}$	excluding 2-jet v br	$p_{T,j2} > 25 \text{ GeV (JVF)}$	Boosted and 2-jet VH						
$\Delta \eta_{jj} > 3.0$	$p_{T,\tau\tau} > 100 \text{ GeV}$	excluding Boosted	$m_{\tau\tau j} > 225 \text{ GeV}$						
$m_{jj} > 400 \text{ GeV}$									
b-tagged jet veto		$30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$							

b-tagged jet veto

		ее + µµ + еµ		
	VBF category	Boosted category	VH category	1-jet category
$gg \rightarrow H (125 \text{ GeV})$	$1.3 \pm 0.2 \pm 0.4$	$12.4 \pm 0.6 \pm 2.9$	$2.5 \pm 0.3 \pm 0.6$	$7.0 \pm 0.5 \pm 1.6$
VBF H (125 GeV)	$3.63 \pm 0.10 \pm 0.02$	$3.36 \pm 0.09 \pm 0.30$	$0.21 \pm 0.03 \pm 0.02$	$1.82 \pm 0.07 \pm 0.18$
VH (125 GeV)	$0.01 \pm 0.01 \pm 0.01$	$2.20 \pm 0.05 \pm 0.22$	$0.64 \pm 0.03 \pm 0.09$	$0.44 \pm 0.02 \pm 0.05$
$Z/\gamma^* \rightarrow \tau \tau$ embedded	$47 \pm 2 \pm 1$	$(1.24 \pm 0.01 \pm 0.08) \times 10^3$	$393 \pm 7 \pm 26$	$(0.86 \pm 0.01 \pm 0.06) \times 10^3$
$Z/\gamma^* o \ell\ell$	$14 \pm 3 \pm 2$	$(0.21 \pm 0.02 \pm 0.04) \times 10^3$	$(0.08 \pm 0.01 \pm 0.02) \times 10^3$	$(0.16 \pm 0.01 \pm 0.03) \times 10^3$
Тор	$15 \pm 2 \pm 3$	$(0.39 \pm 0.01 \pm 0.07) \times 10^3$	$87 \pm 4 \pm 23$	$117 \pm 5 \pm 18$
Diboson	$3.6 \pm 0.8 \pm 0.6$	$55 \pm 3 \pm 10$	$15 \pm 1 \pm 4$	$40 \pm 3 \pm 7$
Backgrounds with fake leptons	$12 \pm 2 \pm 3$	$102 \pm 7 \pm 23$	$86 \pm 4 \pm 16$	$230 \pm 8 \pm 52$
Total background	$91 \pm 5 \pm 5$	$(2.01 \pm 0.03 \pm 0.12) \times 10^3$	$(0.66 \pm 0.02 \pm 0.05) \times 10^3$	$(1.40 \pm 0.02 \pm 0.08) \times 10^{3}$
Observed data	98	2014	636	1405

$H\rightarrow ττ: m_{ττ}$

Likelihood fit to $m_{\tau\tau}$ distributions to extract upper limits and calculate significance.

VBF analysis as an example:

- excess in 2-lepton;
- deficits in 1-lepton and 0-lepton
- ⇒ Neither excess nor deficit combined

H→ττ: Results

Combined results from all searches at $m_H=125$ GeV:

95% CL limits: 1.9 x SM observed and 1.2 x SM expected

Significances: 1.1σ observed and 1.7σ expected

A small overall excess with a best fit signal strength μ =0.7±0.7

Combination

Moving beyond p-value and significances...

Mass and Signal Strength

γγ and 4l dominate the mass measurement

The current best estimate m = 126.0 ± 0.4(stat) ± 0.4(sys) GeV

The overall signal strength

$$\mu = \frac{\sigma \times Br}{\left(\sigma \times Br\right)_{SM}} = 1.3 \pm 0.3$$

Production Processes

Separate the production processes

- fermion coupling: ggF and ttH;
- vector boson couplings: VBF & VH

consistent with SM within 1-2 sigma, but precision is poor...

Coupling Fits

Decompose production and decay as

$$\sigma \times BR(ii \to H \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$$

and parametrize couplings with rescale factors, for example

$$(\sigma \cdot BR)(gg \to H \to \gamma \gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma \gamma) \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$
 rious assumptions to reduce number of rescale factors

Various assumptions to reduce number of rescale factors

Loop couplings

Summary

Nothing has really changed since summer

- the discovery is still there;
- still no conclusive results from fermion final states;

Transition from discovery to measurements:

- precision measurements of the mass;
- production cross sections;
- separate production mechanisms;
- spin and CP measurements;
- coupling measurements

A few 2-3 sigma effects here and there, more headache than excitement so far, stay tuned...

Higgs Boson Production

gluon-gluon fusion gg→H and vector-boson fusion qq→qqH diagrams dominate

@ 125 GeV: $\sigma_{ggH} = 19.5$ pb, $\sigma_{VBF} = 1.6$ pb, $\sigma_{WH} = 0.70$ pb, $\sigma_{ZH} = 0.39$ pb, $\sigma_{ttH} = 0.13$ pb

 \Rightarrow ~290k events in 13 fb⁻¹ at 8 TeV !

Higgs Boson Decay

To all particles kinematically allowed, but two dominant modes:

$$-H \rightarrow b\overline{b}$$
 for $m_H < 135$ GeV;
 $-H \rightarrow WW$ for $m_H > 135$ GeV

Neither is ideal for the search and the study of properties

- bb by itself suffers from huge QCD backgrounds
- WW: easy identification in dilepton mode, complex backgrounds and no full reconstruction

Branching ratios at 125 GeV

bb: 57.7%

WW: 21.5%

ττ: 6.3%

ZZ: 2.6%

γγ: 0.23%

Difficulty level (least to most):

 $\gamma\gamma$, $ZZ^*\rightarrow 4I$, \Rightarrow This seminar $WW^*\rightarrow IVIV$

bb and ττ

Analysis Strategies

Maximum utilization of leptonic (e, μ) and photonic signatures: simple to trigger and identify, lower rates, good energy and position resolutions, ...

Take advantage of varying signal-background ratios of detector regions and event topologies through categorization:

central vs forward, high and low Higgs pT, jet multiplicity bins, ...

Use data-driven methods to estimate backgrounds whenever possible to minimize systematics:

control regions, sidebands, fake leptons, mismeasured ETmiss,...

Fit the distributions of the reconstructed Higgs boson (transverse) mass or equivalent to improve sensitivities:

$$m(\gamma\gamma), m(4\ell), m(b\overline{b}), m(\tau\tau), m_T(\ell v \ell v), m(\ell v q q), m_T(\ell \ell v v), m(\ell \ell q q)$$

Challenge of High Luminosity

Peak luminosity

Multiple interactions!

Challenging pileup issues:

- Lepton reconstruction and isolation
- Primary vertex identification
- Jet energy and multiplicity
- ETmiss resolution

In particular, understanding ETmiss takes time...

Theory and MC

Signal MC:

ggF and VBF: POWHEG+PYTHIA;

WH and ZH: PYTHIA

For gg→H, the Higgs pT is reweighted to the HqT (NNLO+NNLL) calculation.

Background MC:

W/Z+jets: ALPGEN;

Top: MC@NLO (tt), AcerMC (t);

Dibosons: MC@NLO (WW, WZ), SHERPA (ZZ), ALPGEN (W γ),

MadGraph (Wγ*)

Many other generators are used as cross checks. Normalize to data control regions or the latest NⁿLO calculations.

$H \rightarrow \gamma \gamma$

Diphoton mass $m_{\gamma\gamma}$ as the final discriminant variable

$$m^2 = 2E_{\gamma_1}E_{\gamma_2}\left(1 - \cos\Delta\phi_{\gamma\gamma}\right)$$

Model signal and background using analytical functions:

Signal: Crystal-Ball function (core) + Gaussian (outlier)

Backgrounds: exponentials, polynomials, ...

A total 59059 events selected, expect ~170 signal events at 126 GeV

$H \rightarrow \gamma \gamma$

Consistent excesses in both 2011 and 2012 data

Samples	Mass (GeV)	p-value	Obs. Sig.	Exp. Sig.
2011	126	3×10 ⁻⁴	3.4σ	1.6σ
2012	127	5×10 ⁻⁴	3.2σ	1.9σ
Combined	126.5	2×10 ⁻⁶	4.5σ	2.5σ

A minimum p_0	at 126.5 GeV
$p_0 = 2 \times 10^{-6}$	$\Rightarrow 4.5\sigma$

The measured signal strength, the excess relative to the SM expectation, at 126 GeV:

$$\mu = \frac{\sigma \cdot Br}{\left(\sigma \cdot Br\right)_{SM}} = 1.8 \pm 0.5$$

$H \rightarrow ZZ^* \rightarrow 4I$

A small cluster of events populates around 125 GeV

In the region 125 ± 5 GeV					
Dataset	2	2011 2012		2011+2012	
Expected B only Expected S m _H =125 GeV Observed in the data	2±0.3 2±0.3 4		3±0.4 3±0.5 9	5.1±0.8 5.3±0.8 13	
2011+ 2012	2011+ 2012		2e2µ	4e	
Data Expected S/B Reducible/total background		6 1.6 5%	and the second	2 0.5 55%	3

Single resonant contributions Enhanced by relaxing mass and pT requirements

90

95 100 105 m₄₁ [GeV]

75 80 85

$H \rightarrow ZZ^* \rightarrow 4I$

Consistent excesses in both 2011 and 2012 data

Sam	ples	Mass (GeV)	p-value	Obs. Sig.	Exp. Sig.
20	11	125	0.6%	2.5σ	1.6σ
20	12	125.5	0.5%	2.6σ	2.1σ
Coml	bined	125	0.02%	3.6σ	2.7σ

A minimum p_0	at 125 GeV
$p_0 = 2 \times 10^{-4}$	$\Rightarrow 3.6\sigma$

Signal strength at 126 GeV: μ =1.4 ± 0.6

b-jet Tagging

b-quark jets tagging is the key for the analysis...

• Tagging b-quark jets based on relatively long lifetime ($c\tau$ ~450 μ m) of B hadrons; construct a single discriminant from track impact parameters and secondary vertices

Operating point:

b-jet efficiency: ~70%

C-jet rejection: ~5

light-jet rejection: ~130

