


)!Signal strength (

  -1  0 +1

Combined

 4l! 
(*)

 ZZ!H 

"" !H 

#l# l! 
(*)

 WW!H 

$$ !H 

 bb!W,Z H 

-1
Ldt = 4.6 - 4.8 fb% = 7 TeV:  s

-1
Ldt = 13 fb% = 8 TeV:  s

-1
Ldt = 4.6 fb% = 7 TeV:  s

-1
Ldt = 13 fb% = 8 TeV:  s

-1
Ldt = 4.8 fb% = 7 TeV:  s

-1
Ldt = 13 fb% = 8 TeV:  s

-1
Ldt = 13 fb% = 8 TeV:  s

-1
Ldt = 4.6 fb% = 7 TeV:  s

-1
Ldt = 13 fb% = 8 TeV:  s

-1
Ldt = 4.7 fb% = 7 TeV:  s

-1
Ldt = 13 fb% = 8 TeV:  s

 = 125 GeVHm

 0.24" = 1.35 !

ATLAS Preliminary



Contents

1 Introduction 1

2 The diphoton rate 3

3 Collider signals and electroweak constraints 6

4 Discussion and conclusions 11

A RGE and determination of the vacuum instability cut-off scale 12

B Estimates of the collider constraints 13

1 Introduction

The recent announcement of the discovery of the Higgs particle by ATLAS and CMS represents a
triumphant milestone for fundamental physics [? ? ]. All eyes are now turned to examining the
properties of the Higgs in detail, looking for possible deviations from Standard Model (SM) behavior.
Indeed, in these early days, both ATLAS and CMS have an accumulating hint of an anomaly. While
σ × BR(h → ZZ∗) and σ × BR(h → WW ∗) seem compatible with the SM1, there appears to be a
significant enhancement in the diphoton channel σ×BR(h→ γγ), that may be as high as a factor of
2 above the SM expectation:

µγγ =
σ ×BR(h→ γγ)

σ ×BR(h→ γγ)SM
∼ 1.5− 2, (1.1)

µV V =
σ ×BR(h→ V V )

σ ×BR(h→ V V )SM
∼ 1. (1.2)

Of course the most conservative and likely possibility is that this modest excess will not survive
further scrutiny, and will diminish when all the 2012 data is analyzed. It is nonetheless interesting to
contemplate the sorts of new physics that could be responsible for such a large deviation in σ×BR(h→
γγ) while leaving σ ×Br(h→ ZZ∗, WW ∗) essentially unaltered.

While it is possible, in principle, to satisfy Eqs. (1.1-1.2) by only adjusting the tree-level couplings
of the Higgs to SM particles, we find this possibility rather unlikely for the following simple reason.
Assuming that the only modification is via the SM tree-level couplings, then for mh = 125 GeV we

have µ(tree)
γγ ≈

(
1.28− 0.28 rt

rV

)2
×µ(tree)

V V , where rt, rV are the ratio of the couplings of the higgs to the
top and the W/Z relative to the SM couplings. Now in order to obtain, for instance, µγγ = 1.5 µV V ,
there are two solutions: i. (rt/rV ) ≈ 0.2 , or ii. (rt/rV ) ≈ 9.2 Both of these solutions are highly
implausible: allowing an order of magnitude modification to the couplings, it is unlikely that the

1The latter is admittedly an experimentally difficult channel. Note also that while CMS results hint to some deficit
in h→ V V , ATLAS shows a potential excess.

2It is worth recalling that rV > 1 can only be realized in models with doubly-charged scalars [? ].
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The minimal version of split SUSY cannot give a big enough effect – indeed, the only source for
enhancement is the same chargino loop as in natural SUSY. Thus a large enhancement of 1.5 - 2
immediately rules out this version of split SUSY. We can however certainly imagine extra fermions
near the TeV scale; a collection of fermions can have their masses protected by a common chiral
symmetry and set by the same scale.

In what follows we ask whether the recent LHC data can be explained in a framework of this
sort. We show that restricting to un-natural models with only new fermions immediately leads us
to a very narrow set-up with sharp theoretical and experimental implications: (1) new, vector-like,
un-colored fermions with electroweak quantum numbers must exist and be very light, within the range
100 − 150 GeV; (2) the cut-off scale of the theory where additional bosonic degrees of freedom must
kick in, cannot be high and is in fact bounded by ΛUV ∼< 1 − 10 TeV. The cut-off can be somewhat
increased but only at the expanse of significant model-building gymnastics, which further destroys any
hope of perturbative gauge coupling unification.

2 The diphoton rate

A fermionic loop contribution enhancing the Higgs-diphoton coupling requires vector-like represen-
tations and large Yukawa couplings to the Higgs boson. This has important ramifications for the
consistency of the theory at high scale. To see this, note that in the presence of a new fermion f with
electric charge Q, the h → γγ partial width reads4

Γ(h → γγ)
Γ(h → γγ)SM

≈

∣∣∣∣∣1 +
1

Aγ
SM

Q2 4
3

(
∂ log mf

∂ log v

) (
1 +

7 m2
h

120 m2
f

)∣∣∣∣∣

2

, (2.1)

with Γ(h → γγ)SM =
(

GF α2m3
h

128
√

2π3

)
|Aγ

SM |2 and5 Aγ
SM = −6.49. Constructive interference between the

SM and the new fermion amplitude requires electroweak symmetry breaking to contribute negatively to
the mass of the new fermion. Thus f must be part of a vector-like representation with an electroweak-
conserving source of mass.

The basic building block is then the charged vector-like fermion mass matrix,

LM = −
(
ψ+Q χ+Q

)


 mψ
yv√

2
ycv√

2
mχ




(

ψ−Q

χ−Q

)
+ cc, (2.2)

with the Higgs VEV given by 〈H〉 = v/
√

2 = 174 GeV. Eq. (2.2) contains one physical phase, φ =
arg

(
m∗

ψm∗
χyyc

)
, that cannot be rotated away by field redefinitions. It is straightforward to show that

φ = 0 maximizes the effect we are after, making φ (= 0 an un-illuminating complication for our current
purpose. Hence for simplicity we assume φ = 0 in what follows. We are then allowed to take all of
the parameters in Eq. (2.2) to be real and positive. The two Dirac mass eigenvalues are split by an
amount

m2 = m1

(
1 +

√
∆2

v + ∆2
y + ∆2

m

)
, ∆2

v =
2yycv2

m2
1

, ∆2
y =

(y − yc)2 v2

2m2
1

, ∆2
m =

(mψ −mχ)2

m2
1

. (2.3)

4At leading-log plus leading finite-mass correction; see e.g. [? ] for a recent discussion.
5At leading-log, the SM amplitude is given by the top quark and W boson contributions to the QED beta function,`

Aγ
SM

´
leading−log

= bt + bW = +(4/3)2 − 7. Finite mass corrections modify this prediction slightly to Aγ
SM = −6.49.
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and including N copies with identical couplings, the relevant RGEs read [48, 49]

16π2 dy

dt
= y

(
3
2

(
y2 − y2

n

)
+ N

(
y2 + yc2 + y2

n + yc2
n

)
+ 3y2

t −
9g2

2

4
− 9g2

1

4

)
,

16π2 dyn

dt
= yn

(
3
2

(
y2

n − y2
)

+ N
(
y2 + yc2 + y2

n + yc2
n

)
+ 3y2

t −
9g2

2

4
− 9g2

1

20

)
,

16π2 dyt

dt
= yt

(
N

(
y2 + yc2 + y2

n + yc2
n

)
+

9y2
t

2
− 8g2

3 −
9g2

2

4
− 17g2

1

20

)
,

16π2 dλ

dt
= λ

(
24λ− 9g2

2 −
9g2

1

5
+ 12y2

t + 4N
(
y2

n + yc2
n + y2 + yc2

))
− 2N

(
y4 + yc4 + y4

n + yc4
n

)
− 6y4

t

+
3
8

(
2g4

2 +
(

g2
2 +

3g2
1

5

)2
)

. (A.1)

The RGEs for yc and yc
n are similar to that for y and yn. The gauge beta functions are

b1 =
41
10

+
6N
5

, b2 = −19
6

+
2N
3

, b3 = −7. (A.2)

Vector doublets + triplet (“wino-higgsino”). For our “wino-higgsino” scenario, including N
copies with identical couplings and allowing for an additional singlet n, the relevant RGEs read [50]
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n
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2 . (A.3)

b1 =
41
10

+
2N
5

, b2 = −19
6

+ 2N , b3 = −7. (A.4)

We take as initial conditions, at a scale µ = 100 GeV,

g1 = 0.36
√

5/3, g2 = 0.65, g3 = 1.2, yt = 0.99, λ =
m2

h

2v2
= 0.129. (A.5)

The vacuum stability cutoff scale ΛUV is determined by [51]

λ (ΛUV ) =
2π2

3 log
(

H
ΛUV

) = −0.065
(

1− 0.02 log10

(
ΛUV

100 GeV

))
, (A.6)

with the Hubble constant H = 70 km/s/Mpc = 1.5 · 10−42 GeV. We comment that for the problem
under study, Landau poles of the Yukawa couplings appear at much higher scales, beyond the scale
where the vacuum instability sets in, posing no additional constraint.
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“vector− like lepton” : ψ, ψc ∼ (1, 2)± 1
2
, χ, χc ∼ (1, 1)∓1.

−L = mψψψc + mχχχc + yHψχ + ycH†ψcχc + cc.

“wino + Higgisino” : ψ, ψc ∼ (1, 2)± 1
2
, χ ∼ (1, 3)0.

−L = mψψψc +
1
2
mχχχ +

√
2yHψχ +

√
2ycH†ψcχ + cc.
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Figure 2. Left: “vector-like lepton” model. Right: “wino-higgsino” model. The horizontal and vertical axes

correspond to the light and heavy mass eigenvalues, respectively. Pink bands denote the diphoton enhancement

µγγ . Gray bands denote the vacuum instability cut-off ΛUV . Dark is for y = yc; pale is for y = 2yc. The
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scenario.
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Figure 3. Same as Fig. 2, but for N = 2 copies of vector like fermions.

3 Collider signals and electroweak constraints

The light charged fermions discussed in the previous section are produced through electroweak pro-
cesses with appreciable rates at hadron colliders. In this section we consider constraints and detection
prospects from current and upcoming searches, assessing charchteristic detection channels and provid-
ing rough estimates of the experimental sensitivity. We stress that our analysis is simplistic, and can
by no means replace a full-fledged collider study. Nevertheless, our estimates provide solid motivation
and concrete guidelines for a more dedicated study in the future, should the diphoton enhancment be

precision constraints on this field content, in the context of modified Higgs couplings.
8See Eqs. (2.2-2.3) and the discussion between them for the definition of y, yc, ∆m and φ.
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Hence, we should focus attention on NS ≥ 2. The large couplings suggest that our RGEs will become
nonperturbative at low scales. We can quantify this by defining, for each coupling, a perturbativity
limit at which the beta function becomes ≥ 1 when all other couplings are turned off. For example,
we define λmax

H by the condition 1
16π2 24 (λmax

H )2 = 1, i.e. λmax
H ≡

√
2/3π ≈ 2.6. For each coupling, we

define an analogous λmax
i and define a normalized coupling by λ̄i = λi/λmax

i .
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Figure 5. Renormalization group evolution of “normalized couplings,” with the number of scalar species

NS = 2 at left and 3 at right. The normalized couplings λ̄i = λi/λmax
i , where λmax

i is determined by

β(λmax
i ) = 1 even when all other couplings are set to zero. Hence, when any λ̄i = 1, we expect that perturbation

theory is no longer reliable. The dashed horizontal line at 1 is to guide the eye to the approximate perturbativity

boundary. For NS = 2 this happens almost instantaneously, while for N2 = 3 it happens at about 1.4 TeV.

We plot some examples of RGE evolution for the normalized couplings in Figure 5. We begin the
evolution by fixing λH from the Higgs mass, λφSNS = 4.3 to fit the gamma-ray line, λS = 9.3/N2

S

for vacuum stability, λHSNS = −2.2 for a 50% enhancement of h → γγ, yt from the top mass, and
λφH = λφ = 0 at low scales. The result is that, for NS = 2, perturbativity is lost almost immediately
on evolving to higher scales, while for NS = 3 it is lost around the TeV scale. This suggests that the
most reasonable interpretation of these models is as composite models, where the scalars are bound
states. This makes large couplings λS and λφS seem more natural; however, the large value of λHS

suggests that perhaps the Higgs would be composite too. In this case, the small values of λφH (required
by direct and indirect detection bounds) and λH (required by the Higgs mass measurement) seem hard
to reconcile with the idea that composite states would generically be strongly coupled to each other.
We could move to larger values of NS to postpone the loss of perturbativity to higher energy scales,
but would still face a puzzle in the small value of λφH . For instance, by choosing NS = 6, we can
postpone the loss of perturbativity to a scale of 250 TeV. Then, Eq. 2.26 has a factor of 1

NS
log Λ

mS
; we

have increased both the log and NS , and so have not really helped solve the problem. Indeed, solving
the RGE shows that λφS blows up first; the RGE 16π2β(λφS) = 8λ2

φS tells us that the coupling will
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−L ⊃ λφSφ2|S|2 + λHS |S|2|H|2 + λφHφ2|H|2 + m2
S;0|S|2 + λS |S|4 +

1
2
m2

φφ2 + λφφ4

− µ2
H |H|2 + λH |H|4



typically) a factor of e4/(8π2) lower, i.e. 〈σv〉 (γγ) ∼ 10−29 cm3/s. So we expect robust
tension between continuum gamma-ray bounds and annihilation through loops of
SM matter.

3. Subdominant wino DM? To illustrate the previous point: computing for winos in the
MSSM with Micromegas [?], we find at 128 GeV:

〈σv〉 (W̃ 0W̃ 0→W+W−) ≈ 3× 10−24 cm3/s (10)
〈σv〉 (W̃ 0W̃ 0→ γZ) ≈ 9× 10−27 cm3/s (11)
〈σv〉 (W̃ 0W̃ 0→ γγ) ≈ 2× 10−27 cm3/s (12)

If we believe Hooper’s results, then even if winos are only about 1/10 of all the dark
matter there is some tension with the galactic center, and the corresponding photon lines
would be at the 10−28 cm3/s level, too small to explain the observation. The suggestion
of Acharya et al. [?] is then ruled out, in an especially decisive way if Hooper’s bound
is correct.

4. Direct detection: Any dark matter that annihilates to γγ or γZ can in principle show up
in direct-detection experiments through either a loop process (exchanging two photons
or a photon and a Z with the nucleus) or the 2 → 3 process χN → χNγ. However,
these will typically be small enough that there is no limit (in fact, they may be small
enough that the neutrino background swamps any possible detection, possibly with the
exception of directional direct detection). Estimates for a particular model appear in [?],
and are several orders of magnitude below the current limits.

I expect that any model consistent with Hooper’s tree-level continuum gamma-ray con-
straints will also be safe, or at worst borderline, from direct detection through Higgs
exchange. Can we make this statement more precise? This is interesting even inde-
pendent of the gamma-ray line, since it suggests that Fermi-LAT is doing roughly as well
as Xenon at constraining models.

5. Neutrinos: Annihilation to Z bosons in the sun lead to a flux of neutrinos that may be
detectable on Earth. What are the numbers? Edit: I think it’s hopeless—but still
should maybe write down some numbers.

⇒

Figure 3: Illustrating the role of charge particles in arguments about the γ-ray line.
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There are two things to note about Fig. 4. The first is that achieving a reasonable fit both to
the Fermi-LAT gamma ray line and to an enhanced h → γγ rate requires both λφS and λHS to be
order-one numbers. The second is that, to fit the gamma ray line, it is necessary that mS not be
much larger than the dark matter mass; otherwise, the coupling needed to achieve a large enough
cross section rapidly becomes nonperturbatively large. (This raises the intriguing possibility that the
annihilation process φφ → SS, forbidden today if mS > mφ, was active in the early universe and
played a key role in determining the dark matter relic abundance [20, 40].) If we fix a small splitting,
say mS − mφ = 1 GeV, and consider S to be a set of NS degenerate states of charge 1, then the
coupling we need for σv = 10−27 cm3s−1 is already λφSNS = 4.3. (Furthermore, avoiding a potential
that is unbounded from below requires another large coupling, λS ∼> 9.3/N2

S .) A 50% enhancement
in the h → γγ signal requires λHSNS = −2.2. We will now investigate some of the consequences of
these rather large couplings.

2.1.4 RGEs

The one loop RGEs, keeping the scalar quartic couplings, the top Yukawa, and the larger SM gauge
coupling effects, are presented below, for the case where S is charged only under hypercharge. (See
related recent work in [41, 42].)

16π2β(λH) = 24λ2
H + 12λHy2

t + 2λ2
φH + NSλ2

HS − 6y4
t +

9
8
g4
2 − 9g2

2λH (2.19)

16π2β(λφH) = 8λ2
φH + 24λφHλφ + 12λHλφH + 2NSλHSλφS + 6λφHy2

t −
9
2
g2
2λφH (2.20)

16π2β(λHS) = 4λ2
HS + (4 + 4NS)λHSλS + 4λφHλφS + 12λHλHS + 6λφHy2

t −
9
2
g2
2λφH (2.21)

16π2β(λφS) = 8λ2
φS + (4 + 4NS)λSλφS + 4λHSλφH + 24λφλφS (2.22)

16π2β(λS) = (16 + 4NS)λ2
S + 2λ2

HS + 2λ2
φS (2.23)

16π2β(λφ) = 72λ2
φ + 2λ2

φH + NSλ2
φS (2.24)

16π2β(yt) =
9
2
y3

t − 8g2
3yt −

9
4
g2
2yt (2.25)

(An easy way to keep track of the numerical factors appearing the O(λ2) terms in beta functions
of quartic terms is to notice that they must compensate the log µ term in the Coleman-Weinberg
potential, so the beta functions amount to reading off coefficients in TrM4.) Note, in particular, that
we have a simple estimate for a coupling between dark matter and the Higgs induced by a loop of S
fields as shown in the upper left panel of Fig. 2:

λφH ≈
λHSλφSNS

8π2
log

Λ
mS

≈ −0.24
λφSNS

4.3
λHSNS

−2.2
1

NS

log(Λ/mS)
2.0

. (2.26)

Note that log(1 TeV/mS) ≈ 2, so the log will already have this size even when running from quite
a low scale. It is apparent that our bound |λφH | ∼< 0.05 from direct and indirect detection is in
some tension with our desire to explain both the Fermi-LAT gamma ray line and an enhancement in
h → γγ. The problem is ameliorated when the number of species, NS , is large, but this also makes
the renormalization group effects large.

For NS = 1, an even more immediate problem is that avoiding a potential unbounded from below
requires λS ≈ 9. Then the leading term in the λS beta function is 1

16π2 20λ2
S ≈ 11, and there is no

sense in which the theory is under perturbative control. For a single charged scalar (of charge 1), it is
simply not possible to discuss a 50% enhancement in h→ γγ while maintaining a perturbative theory.
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O Experiments Λi(TeV)

OWB EWPT [55] 12.6 [56]

OhW ,OhB Higgs decays !
OW CP-even TGCs [50, 51] 1

OW̃ CP-odd TGCs [53, 54]/electron EDM [55] 0.5/37

OhW̃ CP-odd TGCs [53, 54]/electron EDM [55] 0.7/24

OhB̃ CP-odd TGCs [53, 54]/electron EDM [55] 0.3/47

OW̃B CP-odd TGCs [53, 54]/electron EDM [55] 0.3/34

Table 1. Current experimental bounds on operator coefficients at 90% CL. The operator coefficient ai is

bounded by the interval [−1/Λ2
min, 1/Λ2

max]. The Λi (in TeV) shown in the table is the average of Λmin and

Λmax.

3.2 Correlation between CP-odd and CP-even observables

Now we want to explore possible correlations between CP-even and odd observables. Firstly, if the
charged matter is vector-like, e.g., two Weyl fermions married by a Dirac mass which does not depend
on the electroweak symmetry breaking, one can always rotate away the phases by field redefinitions.
Thus they could lead to a change in CP-even TGCs, which as we discussed, is only weakly bounded
and difficult to measure. If the charged matter is purely chiral with mass purely from the Higgs VEV,
e.g., fourth-generation leptons, there could be additional CKM-like phases. For colorless chiral matter
with mass around weak scale, they will decrease the branching fraction of Higgs decaying to diphotons,
leading to a rate that is at least one sigma away from the best fit values of current Higgs fit.

The most interesting case is vector-like matter which obtain part of their masses from electroweak
symmetry breaking. The general mass matrix, e.g., for fermions, is

LM = −
(
ψ+Q χ+Q

)


 mψ
yv√

2
ycv√

2
mχ




(

ψ−Q

χ−Q

)
+ cc, (3.6)

with the Higgs VEV given by 〈H〉 = v/
√

2 = 174 GeV and ψ, χ are Weyl fermions. There is one
physical phase, φ = arg

(
m∗

ψm∗
χyyc

)
, that cannot be rotated away by field redefinitions. There

is an analogous mass matrix for scalars, e.g., the left- and right- handed stau mass mixing matrix
with the diagonal entries the soft masses and off-diagonal entries A-terms, where the physical phase
is arg

(
A∗m2

s

)
. With insertion of the physical phase, the diagrams generating CP-even operators,

OW ,OhW ,OhB lead to OhW̃ ,OhB̃ . Notice that WWW̃ operator is not generated at one-loop. The
reason is that W ’s, Z only couple to fermion of the same chirality. Without introducing dependence
on the Higgs field, as each mass flips chirality, the diagram is always proportional to the even powers
of |mψ|2 or |mχ|2, which are always real. WWW̃ operator could be generated at the two-loop order
or similar to the Weinberg operator GGG̃, WWW̃ receives a finite threshold correction from a heavy
SU(2)W charged particle with a non-zero EDM de and mass m check the numerics here.

aW̃ =
g2

32π2

de

m
. (3.7)

Constraint on aW̃ translates into de
m < 3×10−20 e·cm

1 TeV .
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Figure 8. Upper: “vector-like lepton” model; Lower: “wino-Higgisino” model. N = 1, mψ = mχ, y = yc in

all these plots. The horizontal and vertical axes correspond to the light and heavy mass eigenvalues. The solid

purple line is the current EDM constraint de/e = 1.05× 10−27 cm with the grey region excluded; the dashed

purple line is the projected constraint de/e = 10−28 cm. The green lines denote the diphoton enhancement

µγγ .

A Giudice, Romanino and Wells are wrong on a small point: still awesome

In this section, we clarify a small mistake in the literature. Some smart people mentioned casu-
ally that there are two more CP-odd dimension six operators besides the ones we listed in Sec. 3.1
(DµH)†σaDνHW̃ a

µν and (DµH)†DνHB̃µν [47, 48]. We will show that these two operators are related
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Figure 9. Upper: “vector-like lepton” model; Lower: “wino-Higgisino” model. N = 2, mψ = mχ, y = yc in

all these plots. The horizontal and vertical axes correspond to the light and heavy mass eigenvalues. The solid

purple line is the current EDM constraint de/e = 1.05× 10−27 cm with the grey region excluded; the dashed

purple line is the projected constraint de/e = 10−28 cm. The green lines denote the diphoton enhancement

µγγ .

by equation of motion to the ones we listed. We will take (DµH)†σaDνHW̃ a
µν for example.

(DµH)†σaDνHW̃µν;a = (∂µH† + i
g

2
H†W b

µσb + i
g′

2
H†BµY )σaDνHW̃µν;a

= −H†σaDνH∂µW̃µν;a −H†σa(∂µDνH)W̃µν;a +
(

i
g

2
H†W b

µσb + i
g′

2
H†BµY

)
σaDνHW̃µν;a

= −H†σaDνH∂µW̃µν;a −H†σa

((
∂µ + i

g

2
W b

µσb + i
g′

2
BµY

)
DνH

)
W̃µν;a + gH†εabcW

b
µσcDνHW̃µν;a

= −H†σaDνH(−gεabcW
b
µW̃µν;c)−H†σa(DµDνH)W̃µν;a + gH†εabcW

b
µσcDνHW̃µν;a

= −1
2
H†σa[Dµ, Dν ]HW̃µν;a

=
i

4
H†σa(gW b

µνσb + g′Bµν)HW̃µν;a =
i

4
gH†HWµνW̃µν +

i

4
g′H†σaHBµνW̃µν;a, (A.1)
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Figure 2. Left: “vector-like lepton” model. Right: “wino-higgsino” model. The horizontal and vertical axes

correspond to the light and heavy mass eigenvalues, respectively. Pink bands denote the diphoton enhancement

µγγ . Gray bands denote the vacuum instability cut-off ΛUV . Dark is for y = yc; pale is for y = 2yc. The

width of the bands (for both µγγ and ΛUV ) correspond to varying the electroweak-conserving mass splitting

term ∆m (see Eq. (2.3)) from zero to one. Green dashed band, on the right, denotes the SUSY wino-higgsino

scenario.
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Figure 3. Same as Fig. 2, but for N = 2 copies of vector like fermions.

3 Collider signals and electroweak constraints

The light charged fermions discussed in the previous section are produced through electroweak pro-
cesses with appreciable rates at hadron colliders. In this section we consider constraints and detection
prospects from current and upcoming searches, assessing charchteristic detection channels and provid-
ing rough estimates of the experimental sensitivity. We stress that our analysis is simplistic, and can
by no means replace a full-fledged collider study. Nevertheless, our estimates provide solid motivation
and concrete guidelines for a more dedicated study in the future, should the diphoton enhancment be

precision constraints on this field content, in the context of modified Higgs couplings.
8See Eqs. (2.2-2.3) and the discussion between them for the definition of y, yc, ∆m and φ.
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