### Cold atom experimental capabilities

prospects for low energy physics at the sensitivity frontier



David Weld UC Santa Barbara, California Institute for Quantum Emulation

May 18, 2018 KITP

- Experimental Approaches
  - Short-distance gravity
  - Degenerate quantum gases
- Exploring driven quantum systems
  - Position-space Bloch oscillations
  - Relativistic harmonic motion
  - Transport in Floquet-Bloch bands
- Future possibilities
  - Enhanced metrology
  - Atoms near surfaces
  - Discussion...

#### Experimental Approaches

- Short-distance gravity
- Degenerate quantum gases
- Exploring driven quantum systems
  - Position-space Bloch oscillations
  - Relativistic harmonic motion
  - Transport in Floquet-Bloch bands
- Future possibilities
  - Enhanced metrology
  - Atoms near surfaces
  - Discussion...



- Experimental Approaches
  - Short-distance gravity -
  - Degenerate quantum gases
- Exploring driven quantum systems
  - Position-space Bloch oscillations
  - Relativistic harmonic motion
  - Transport in Floquet-Bloch bands
- Future possibilities
  - Enhanced metrology
  - Atoms near surfaces
  - Discussion...



# The experimental challenge of Cavendish-type experiments

$$\frac{F_{Detectable}}{\sqrt{b}} = \left(\frac{4kk_BT}{Q\omega_0}\right)^{1/2}$$

$$F_{Newton} = G \frac{m_1 m_2}{r^2}$$

- G<<1: Gravity is the weakest force in nature</li>
  - ☐ Force sensitivity must be very good
  - ☐ Weak forces (Casimir, van der Waals, Knudsen) all much larger than signal
- For largest force signal: High m, Low r
  - ☐ Masses should be as large and dense and as close together as possible
  - ☐ Parallel-plate geometry best, but leads to fabrication and alignment challenges
- For best force sensitivity: High Q, Low k, Low T
  - ☐ Precise alignment and actuation at low temperature required

# Cantilever Experiment









#### Phase determination



# Yukawa Parameter Space (old plot!)



- Experimental Approaches
  - Short-distance gravity
  - Degenerate quantum gases
- Exploring driven quantum systems
  - Position-space Bloch oscillations
  - Relativistic harmonic motion
  - Transport in Floquet-Bloch bands
- Future possibilities
  - Enhanced metrology
  - Atoms near surfaces
  - Discussion...



### **Bose-Einstein Condensates**









#### High Temperature T:

thermal velocity v density d<sup>-3</sup>

"Billiard balls"

# Low Temperature T:

De Broglie wavelength λ<sub>dB=h/mv</sub> ∝ T<sup>-1/2</sup>

"Wave packets"

#### T=T<sub>Crit</sub>: Bose-Einstein Condensation

 $\lambda_{dB} \approx d$ 

"Matter wave overlap"

#### T=0: Pure Bose condensate

"Giant matter wave"





- Coldest\* objects in the universe (pK-nK)
- Macroscopic quantum phenomena: superfluidity, matter-wave interference
- Tunable interactions
- Near-perfect quantum control

#### **Strontium Machine**

- Design favors optics over magnets
- Multiple isotopes (87Sr, 84Sr, 88Sr, 86Sr)
- Science chamber architecture (QGM, quantum sensing)





#### **Lithium Machine**





# **Hot and Cold Atoms**



- Experimental Approaches
  - Short-distance gravity
  - Degenerate quantum gases
- Exploring driven quantum systems
  - Position-space Bloch oscillations
  - Relativistic harmonic motion
  - Transport in Floquet-Bloch bands
- Future possibilities
  - Enhanced metrology
  - Atoms near surfaces
  - Discussion...



# **Driven Systems**

The basic question: what happens when you shake things?



# Driven Systems: Classical Example

Pendulum with vibrating pivot:



$$\ddot{Q} + [\mathcal{O} + \mathcal{C}\cos(t)]\sin Q = 0$$





# Driven Systems: Quantum Example

- Atoms and solids in pulsed-laser fields
- Nontrivial dynamical behavior (tunnel ionization, HHG)
- Emergent states of matter







- Experimental Approaches
  - Short-distance gravity
  - Degenerate quantum gases
- Exploring driven quantum systems
  - Position-space Bloch oscillations
  - Relativistic harmonic motion
  - Transport in Floquet-Bloch bands



- Future possibilities
  - Enhanced metrology
  - Atoms near surfaces
  - Discussion...

- In a periodic system, static force produces oscillatory response (Bloch, Zener 1929)
- Momentum evolves through edge of Brillouin zone
- Bloch oscillations in optical lattices are a nice force sensor (frequency depends on force).
- Used in a recent fine structure constant determination [Science **360**, 6385 (2018)]
- Typically probed in momentum space; positionspace dynamics initially predicted by Zener too small to be observed



Li (light, non-interacting) in lattice enables PSBO observation



• Li (light, non-interacting) in lattice enables PSBO observation



Use 1: directly map phase-space evolution during a Bloch oscillation



Z. Geiger, K. Fujiwara, DMW, arXiv 1803.02456 (accepted by PRL)

Use 2: direct imaging of band structure

• x(t) maps directly to E(k):

$$E = \frac{hf_B}{d}x, \qquad k = \frac{k_L}{2T_B}t$$

• ARPES-like measurement



Use 2: direct imaging of band structure

• x(t) maps directly to E(k):

$$E = \frac{hf_B}{d}x, \qquad k = \frac{k_L}{2T_B}t$$

ARPES-like measurement

Works in excited bands too...



Z. Geiger, K. Fujiwara, DMW, arXiv 1803.02456 (accepted by PRL)

- Use 2: direct imaging of band structure
- x(t) maps directly to E(k):

$$E = \frac{h_{FD}}{\Rightarrow}$$
 Position-space Bloch oscillations are visible and useful.

• ARPES- Next: How does physics change in higher bands?

Works in excited bands too...



Z. Geiger, K. Fujiwara, DMW, arXiv 1803.02456 (accepted by PRL)

- Experimental Approaches
  - Short-distance gravity
  - Degenerate quantum gases
- Exploring driven quantum systems
  - Position-space Bloch oscillations
  - Relativistic harmonic motion
  - Transport in Floquet-Bloch bands



- Future possibilities
  - Enhanced metrology
  - Atoms near surfaces
  - Discussion...



 Amplitude modulation can excite to the d band



 Amplitude modulation can excite to the d band

AM frequency gives momentum selectivity

 What do we see if we drive such a transition?



 Amplitude modulation can excite to the d band

AM frequency gives momentum selectivity

 What do we see if we drive such a transition?

Connects to a classic physics problem:
 What if a harmonic oscillator approaches the speed of light?

$$E = \frac{p^2}{2m}$$
  $\Longrightarrow$   $E = \sqrt{p^2c^2 + m^2c^4}$ 

- Longstanding theory predictions:
  - Velocity saturation (obviously)
  - Relativistic anharmonicity
  - Increasingly photon-like worldlines
- Surprisingly hard to realize experimentally (requires trap depth of order mc<sup>2)</sup>
- d-band dispersion has exact relativistic form→ allows us to realize & study relativistic harmonic motion at extremely low energy



- We observe dynamics in good quantitative agreement with relativistic predictions
- Low-energy worldlines look harmonic
- Higher-energy: photon-like dynamics



K. Fujiwara, Z. Geiger, DMW, arXiv 1712.09501 (2017)

- We observe dynamics in good quantitative agreement with relativistic predictions
- Low-energy worldlines look harmonic
- Higher-energy: photon-like dynamics
- Velocity saturates near c = 143 mm/s



- We observe dynamics in good quantitative agreement with relativistic predictions
- Low-energy worldlines look harmonic
- Higher-energy: photon-like dynamics
- Velocity saturates near c = 143 mm/s
- Anharmonicity beyond leading order
- Relativistic dephasing of ensembles
- Phase-shifted relativistic breathing mode





K. Fujiwara, Z. Geiger, DMW, arXiv 1712.09501 (2017)

#### Relativistic Harmonic Motion in the d Band

- We observe dynamics in good quantitative agreement with relativistic predictions
- Low-energy worldlines look harmonic
- Higher-energy: photon-like dynamics



- Realized relativistic harmonic motion by driving to higher band.
- Next: What if we leave the driving on?
- Relativistic dephasing of ensembles
- Phase-shifted relativistic breathing mode



K. Fujiwara, Z. Geiger, DMW, arXiv 1712.09501 (2017)

## **Outline**

- Experimental Approaches
  - Short-distance gravity
  - Degenerate quantum gases
- Exploring driven quantum systems
  - Position-space Bloch oscillations
  - Relativistic harmonic motion
  - Transport in Floquet-Bloch bands
- Future possibilities
  - Enhanced metrology
  - Atoms near surfaces
  - Discussion...



- Putting these techniques together:
  - Apply constant AM drive resonant with s-d transition at finite k
  - Allow atoms to Bloch oscillate
  - What happens?



- Putting these techniques together:
  - Apply constant AM drive resonant with s-d transition at finite k
  - Allow atoms to Bloch oscillate
  - What happens?

**Drive Off** 



- Putting these techniques together:
  - Apply constant AM drive resonant with s-d transition at finite k
  - Allow atoms to Bloch oscillate
  - What happens?

Drive Off

Drive On





- Putting these techniques together:
  - Apply constant AM drive resonant with s-d transition at finite k
  - Allow atoms to Bloch oscillate
  - What happens?

→ Giant Floquet-Bloch oscillations



Can think of this as evolution in a single Floquet-hybridized s/d band



Allows precise coherent control of long-range transport



Can image dispersion of s-p hybridized Floquet-Bloch band via PSBOs

Flexible tool for band engineering

- Some future possibilities:
  - Gradiometry
  - Atom interferometry
  - Multi-frequency driving
  - Topological bands



## **Outline**

- Experimental Approaches
  - Short-distance gravity
  - Degenerate quantum gases
- Exploring driven quantum systems
  - Position-space Bloch oscillations
  - Relativistic harmonic motion
  - Transport in Floquet-Bloch bands

#### Future possibilities

- Enhanced metrology
- Atoms near surfaces
- Discussion...



#### **Some Metrological Possibilities**

- Quantum control techniques can improve measurements at the precision frontier
- Bloch oscillations for force sensing
- α<sup>-1</sup>=137.035999046(27)\*
- Floquet-Bloch atom interferometry?
- AC experiments to look for  $\dot{\alpha}$  (e.g. near Feshbach resonances)
- What good are 1 million atoms in the same state? Superradiant effects?
   Bosonic stimulation? Tunable resonant interactions? Other ideas?



• Another possible tool: hybrid quantum systems

• Atoms: Good emulators. Uniform. Controllable. Ephemeral.



• Defects: Good sensors. Small. Variable. Long-lived.



→ Some expts could benefit from a combination of these virtues.

• Atoms: Good emulators. Uniform. Controllable. Ephemeral.



• Defects: Good sensors. Small. Variable. Long-lived.



• Direct optical coupling is challenging.



• Is magnetic coupling possible?



• Is magnetic coupling possible?



• Another possibility:



- Another possibility:
  - NVs 20nm deep can sense single e⁻ spins on surface
  - Nuclear spins harder, but within plausible reach
  - Atoms can be removed from surface to reinitialize
  - → Non-reversible transport of info about atoms to NVs.



Is this useful?

#### Possible uses:

- Ultra-high-resolution quantum gas microscopy
- Controllable test of surface decoherence mechanisms
- Sensitive probe of atom-surface interactions
  - Reservoir spectroscopy of clock shifts near surfaces
  - Short-distance spin-spin forces
  - Many other interactions

#### **Adsorbate Reservoir Spectroscopy**

- Start with spin-polarized atomic sample (e.g. <sup>87</sup>Sr)
- Spin-changing clock transitions allowed near surface
- Apply probe laser at varying time
- NV reads out spin state after adsorption
- Sensitive to interactions that affect (shift/broaden/allow) intercombination transitions



# **Quantum Interfaces**

**Artist's Conception** 



**Prototype Experiment** 



→ Work is ongoing. First goal: demonstrate atom-defect interactions.

#### **Conclusions**

- Cold atoms are a natural tool for probing nonequilibrium systems
  - Position-space Bloch oscillations
  - Relativistic harmonic motion
  - Floquet band engineering

- New quantum control techniques may give rise to new measurement capabilities
  - Force sensing
  - Atom interferometry
  - Calibration & enhancement of existing techniques
- Atoms near surfaces may enable new probes of short-distance interactions
  - One possibility: adsorbate reservoir spectroscopy



## Acknowledgements



#### **UCSB Group:**

Zach Geiger
Ruwan Senaratne
Shankari Rajagopal
Kurt Fujiwara
Kevin Singh
Misha Lipatov
Peter Dotti
Quinn Simmons
James Chow (UG)
Yi Zeng (UG)
Shuo Ma (UG)
Toshi Shimasaki (PD)

#### **Collaborations & Ideas:**

Martin Holthaus Alejandro Saenz Torsten Meier André Eckardt Markus Heyl Rodislav Driben Volodya Konotop Tarun Grover Ania Jayich CAIQUE Team MURI Team











