

The Proton Radius Puzzle

Gil Paz

Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA

Introduction: The proton radius puzzle

Form Factors

• Matrix element of EM current between nucleon states give rise to two form factors $(q = p_f - p_i)$

$$\langle N(p_f)|\sum_{q} e_q \,\bar{q}\gamma^{\mu}q|N(p_i)\rangle = \bar{u}(p_f) \left[\gamma^{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}}{2m}F_2(q^2)q^{\nu}\right]u(p_i)$$

Sachs electric and magnetic form factors

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_p^2}F_2(q^2) \qquad G_M(q^2) = F_1(q^2) + F_2(q^2)$$
$$G_E^p(0) = 1 \qquad \qquad G_M^p(0) = \mu_p \approx 2.793$$

• The slope of G_E^p

$$\langle r^2 \rangle_E^p = 6 \frac{dG_E^p}{dq^2} \bigg|_{q^2 = 0}$$

determines the charge radius $r_E^p \equiv \sqrt{\langle r^2 \rangle_E^p}$

The proton *magnetic* radius

$$\langle r^2 \rangle_M^p = \frac{6}{G_M^p(0)} \frac{dG_M^p(q^2)}{dq^2} \Big|_{q^2 = 0}$$

Charge radius from atomic physics

$$\langle p(p_f)|\sum_{q} e_q \,\bar{q}\gamma^{\mu}q|p(p_i)\rangle = \bar{u}(p_f)\left[\gamma^{\mu}F_1^p(q^2) + \frac{i\sigma_{\mu\nu}}{2m}F_2^p(q^2)q^{\nu}\right]u(p_i)$$

• For a point particle amplitude for $p+\ell
ightarrow p+\ell$

$$\mathcal{M} \propto rac{1}{q^2} \quad \Rightarrow \quad U(r) = -rac{Zlpha}{r}$$

• Including q^2 corrections from proton structure

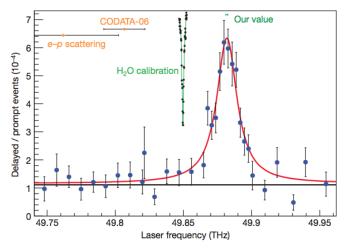
$$\mathcal{M} \propto rac{1}{q^2} q^2 = 1 \quad \Rightarrow \quad U(r) = rac{4\pi Z \alpha}{6} \delta^3(r) (r_E^p)^2$$

• Proton structure corrections $\left(m_r=m_\ell m_p/(m_\ell+m_p)pprox m_\ell
ight)$

$$\Delta E_{r_E^p} = \frac{2(Z\alpha)^4}{3n^3} m_r^3 (r_E^p)^2 \delta_{\ell 0}$$

• Muonic hydrogen can give the best measurement of r_E^p !

Charge radius from Muonic Hydrogen



• CREMA Collaboration measured for the first time $2S_{1/2}^{F=1} - 2P_{3/2}^{F=2}$ transition in Muonic Hydrogen [Pohl et al. Nature **466**, 213 (2010)]

• Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)] $r_E^p = 0.84184(67)$ fm

more recently $r_E^p = 0.84087(39)$ fm [Antognini et al. Science 339, 417 (2013)]

• CODATA value [Mohr et al. RMP 80, 633 (2008)] $r_E^p = 0.87680(690)$ fm

more recently $r_E^p = 0.87510(610)$ fm [Mohr et al. RMP 88, 035009 (2016)] extracted mainly from (electronic) hydrogen

- 5σ discrepancy!
- This is the proton radius puzzle

• What could the reason for the discrepancy?

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)
- 2) Hadronic Uncertainty? (Part 2 of this talk)

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)
- 2) Hadronic Uncertainty? (Part 2 of this talk)
- 3) New Physics?
 - Declaimer: I will focus on published work I am involved in

Outline

- Introduction: The proton radius puzzle
- Part 1: Proton radii from scattering
- Part 2: Hadronic Uncertainty?
- Part 3: Connecting muon-proton scattering and muonic hydrogen
- Conclusions and outlook

Part 1: Proton radii from scattering

What did PDG 2010 say?

K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

p CHARGE RADIUS

This is the rms ch	arge	e radius, $\sqrt{\langle r^2 angle}$.			
VALUE (fm)		DOCUMENT ID		TECN	COMMENT
0.8768±0.0069		MOHR	08	RVUE	2006 CODATA value
• • • We do not use the f	ollow	ving data for ave	rages	, fits, lin	nits, etc. • • •
0.897 ±0.018		BLUNDEN	05		SICK 03 + 2 γ correction
0.8750 ± 0.0068		MOHR	05	RVUE	2002 CODATA value
$0.895 \pm 0.010 \pm 0.013$		SICK	03		$e p \rightarrow e p$ reanalysis
$0.830 \pm 0.040 \pm 0.040$	24	⁴ ESCHRICH	01		$e p \rightarrow e p$
0.883 ±0.014		MELNIKOV	00		1S Lamb Shift in H
0.880 ±0.015		ROSENFELDR	.00		ep + Coul. corrections
0.847 ±0.008		MERGELL	96		e p + disp. relations

Citation: K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov)

0.877 ±0.024	WONG	94	reanalysis of Mainz <i>e p</i> data		
0.865 ± 0.020	MCCORD	91	$e p \rightarrow e p$		
0.862 ± 0.012	SIMON	80	$e p \rightarrow e p$		
0.880 ±0.030	BORKOWSKI	74	$e p \rightarrow e p$		
0.810 ± 0.020	AKIMOV	72	$e p \rightarrow e p$		
0.800 ±0.025	FREREJACQ	. 66	$e p \rightarrow e p (CH_2 tgt.)$		
0.805 ± 0.011	HAND	63	$e p \rightarrow e p$		
24 ESCHRICH 01 actually gives $\langle r^2 \rangle = (0.69 \pm 0.06 \pm 0.06) \text{ fm}^2$					

Gil Paz (Wayne State University)

I

Proton charge radius from scattering

- The PDG 2010 lists proton radii starting from 1963
- This is about 50 years of radii extraction.
- You can find almost any value between 0.8-0.9 fm....
- Data sets have changed over the last 50 years but even using the same data sets different people get different values
- What is the problem?

Form Factors: What we don't know

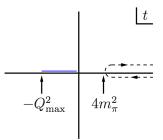
- The form factors are non-perturbative objects.
- **Nobody** knows the *exact* functional form of G_E^p and G_M^p
- They don't have to have a dipole/polynomial/spline or any other functional form
- Including such models can bias your extraction of r_E^p and r_M^p

Form Factors: What we do know

- Notation: $q^2 = t = -Q^2$
- Analytic properties of $G_E^p(t)$ and $G_M^p(t)$ are known
- They are analytic outside a cut $t \in [4m_\pi^2,\infty]$

[Federbush, Goldberger, Treiman, Phys. Rev. 112, 642 (1958)]

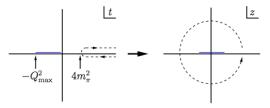
• e - p scattering data is in t < 0 region



• z expansion: map domain of analyticity onto unit circle

$$z(t, t_{ ext{cut}}, t_0) = rac{\sqrt{t_{ ext{cut}} - t} - \sqrt{t_{ ext{cut}} - t_0}}{\sqrt{t_{ ext{cut}} - t} + \sqrt{t_{ ext{cut}} - t_0}}$$

where $t_{\rm cut} = 4m_{\pi}^2$, $z(t_0, t_{\rm cut}, t_0) = 0$

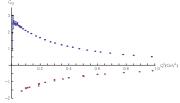


• Expand $G_{E,M}^p$ in a Taylor series in z: $G_{E,M}^p(q^2) = \sum_{k=0}^{\infty} a_k \, z(q^2)^k$

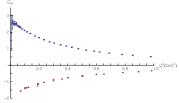
• The method for meson form factors [Flavor Lattice Averaging Group, EPJ C 74, 2890 (2014)]

• [Zachary Epstein, GP, Joydeep Roy PRD 90, 074027 (2014)]

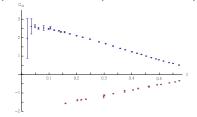
• [Zachary Epstein, GP, Joydeep Roy PRD **90**, 074027 (2014)] $G_M(Q^2)$ for proton (blue, above axis) and neutron (red, below axis)



• [Zachary Epstein, GP, Joydeep Roy PRD **90**, 074027 (2014)] $G_M(Q^2)$ for proton (blue, above axis) and neutron (red, below axis)



 $G_M(z)$ for proton (blue, above axis) and neutron (red, below axis)



• See also R.J. Hill talk at FPCP 2006 [hep-ph/0606023]

Extracting r_F^p using the z expansion

- First use of the z expansion to extract r^p_E [Richard J. Hill, GP PRD 82 113005 (2010)]
- Proton: $Q^2 < 0.5 \text{ GeV}^2$

$$r_E^{
ho} = 0.870 \pm 0.023 \pm 0.012 \, {
m fm}$$

• Proton and neutron data

$$r_E^p = 0.880^{+0.017}_{-0.020} \pm 0.007 \,\mathrm{fm}$$

• Proton, neutron and $\pi \pi$ data

$$r_E^p = 0.871 \pm 0.009 \pm 0.002 \pm 0.002 \,\mathrm{fm}$$

• Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)] $r_E^p = 0.84184(67)$ fm more recently $r_E^p = 0.84087(39)$ fm [Antognini et al. Science 339, 417 (2013)]

• CODATA value [Mohr et al. RMP 80, 633 (2008)] $r_E^p = 0.87680(690)$ fm

more recently $r_E^p = 0.87510(610)$ fm [Mohr et al. RMP 88, 035009 (2016)]

PDG 2016

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

p CHARGE RADIUS

This is the rms electric charge radius, $\sqrt{\langle r_E^2 \rangle}$.

VALUE (fm)	DOCUMENT ID		TECN	COMMENT
0.8751 ±0.0061	MOHR	16	RVUE	2014 CODATA value
$0.84087 \pm 0.00026 \pm 0.00029$	ANTOGNINI	13	LASR	μp -atom Lamb shift
 We do not use the followi 	ng data for avera	ges, fi	ts, limits	, etc. • • •
$0.895 \pm 0.014 \pm 0.014$	¹ LEE	15	SPEC	Just 2010 Mainz data
0.916 ±0.024	LEE	15	SPEC	World data, no Mainz
0.8775 ± 0.0051	MOHR	12	RVUE	2010 CODATA, ep data
$0.875 \pm 0.008 \pm 0.006$	ZHAN	11	SPEC	Recoil polarimetry
$0.879 \pm 0.005 \pm 0.006$	BERNAUER	10	SPEC	$e p \rightarrow e p$ form factor
$0.912 \pm 0.009 \pm 0.007$	BORISYUK	10		reanalyzes old ep data
$0.871 \pm 0.009 \pm 0.003$	HILL	10		z-expansion reanalysis
$0.84184 \!\pm\! 0.00036 \!\pm\! 0.00056$	POHL	10	LASR	See ANTOGNINI 13
0.8768 ± 0.0069	MOHR	08	RVUE	2006 CODATA value
$0.844 \begin{array}{c} +0.008 \\ -0.004 \end{array}$	BELUSHKIN	07		Dispersion analysis
0.897 ± 0.018	BLUNDEN	05		SICK 03 + 2 γ correction
0.8750 ± 0.0068	MOHR	05	RVUE	2002 CODATA value
$0.895 \pm 0.010 \pm 0.013$	SICK	03		$e p \rightarrow e p$ reanalysis

[Hill, GP PRD 82 113005 (2010)]

Extracting r_M^p using the z expansion

z expansion study

[Zachary Epstein, GP, Joydeep Roy PRD 90, 074027 (2014)]

- Proton data : $r_M^p = 0.91^{+0.03}_{-0.06} \pm 0.02$ fm
- Proton and neutron data: $r_M^{p} = 0.87^{+0.04}_{-0.05} \pm 0.01$ fm
- Proton, neutron and $\pi \, \pi$ data: $r^p_M = 0.87 \pm 0.02$ fm

PDG 2016

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

p MAGNETIC RADIUS

This is the rms magnetic radius, $\sqrt{\langle r_M^2 \rangle}$.

VALUE (fm)	DOCUMENT ID		TECN	COMMENT
$0.776 {\pm} 0.034 {\pm} 0.017$	¹ LEE	15	SPEC	Just 2010 Mainz data
• • • We do not use the following data for averages,				imits, etc. • • •
0.914 ± 0.035	LEE	15	SPEC	World data, no Mainz
0.87 ± 0.02	EPSTEIN	14		Using ep, en, $\pi\pi$ data
$0.867 \pm 0.009 \pm 0.018$	ZHAN	11	SPEC	Recoil polarimetry
$0.777 \!\pm\! 0.013 \!\pm\! 0.010$	BERNAUER	10	SPEC	$e p \rightarrow e p$ form factor
$0.876 \!\pm\! 0.010 \!\pm\! 0.016$	BORISYUK	10		Reanalyzes old $e p \rightarrow e p$ data
0.854 ± 0.005	BELUSHKIN	07		Dispersion analysis

¹Authors also provide values for a combination of all available data.

[Epstein, GP, Roy PRD 90, 074027 (2014)]

Gil Paz (Wayne State University)

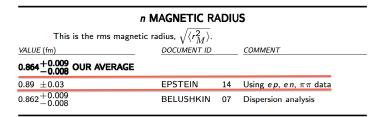
Neutron magnetic radius: z expansion

- The neutron has zero charge but non-zero magnetic moment
- Can extract the neutron magnetic radius from the same data
- Using proton, neutron and $\pi \pi$ data:

$$r_M^n = 0.89 \pm 0.03 \; {\rm fm}$$

PDG 2016

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)



[Epstein, GP, Roy PRD 90, 074027 (2014)]

Gil Paz (Wayne State University)

Latest z expansion fit

 Most recent study using the z expansion [Gabriel Lee, J. R. Arrington, and R. J. Hill, PRD 92, 013013 (2015)] Analyze the "Mainz" data set [J. C. Bernauer et al. PRL 105, 242001 (2010)] and world data (excluding Mainz)

World data

[Lee, Arrington, Hill '15] [Epstein, GP, Roy '14]

- $r^p_M = 0.913 \pm 0.037$ fm $r^p_M = 0.910^{+0.030}_{-0.060} \pm 0.020$ fm
- Mainz data $r_E^p = 0.895 \pm 0.020 \text{ fm}$ $r_M^p = 0.773 \pm 0.038 \text{ fm}$

PDG 2016: *r*^{*p*}_{*E*}

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

p CHARGE RADIUS

This is the rms electric charge radius, $\sqrt{\langle r_E^2 \rangle}$.

VALUE (fm)	DOCUMENT ID		TECN	COMMENT
0.8751 ±0.0061	MOHR	16	RVUE	2014 CODATA value
$0.84087 \pm 0.00026 \pm 0.00029$	ANTOGNINI	13	LASR	μp -atom Lamb shift
• • We do not use the following data for averages, fits, limits, etc. • • •				
$0.895 \pm 0.014 \pm 0.014$	¹ LEE	15	SPEC	Just 2010 Mainz data
0.916 ±0.024	LEE	15	SPEC	World data, no Mainz
0.8775 ±0.0051	MOHR	12	RVUE	2010 CODATA, ep data
$0.875 \pm 0.008 \pm 0.006$	ZHAN	11	SPEC	Recoil polarimetry
$0.879 \pm 0.005 \pm 0.006$	BERNAUER	10	SPEC	$e p \rightarrow e p$ form factor
$0.912 \pm 0.009 \pm 0.007$	BORISYUK	10		reanalyzes old <i>e p</i> data
$0.871 \pm 0.009 \pm 0.003$	HILL	10		z-expansion reanalysis
$0.84184 \!\pm\! 0.00036 \!\pm\! 0.00056$	POHL	10	LASR	See ANTOGNINI 13
0.8768 ± 0.0069	MOHR	08	RVUE	2006 CODATA value
$0.844 \begin{array}{c} + 0.008 \\ - 0.004 \end{array}$	BELUSHKIN	07		Dispersion analysis
0.897 ±0.018	BLUNDEN	05		SICK 03 + 2 γ correction
0.8750 ± 0.0068	MOHR	05	RVUE	2002 CODATA value
$0.895 \pm 0.010 \pm 0.013$	SICK	03		$e p \rightarrow e p$ reanalysis

[Hill, GP PRD **82** 113005 (2010)] [Lee, Arrington, Hill, PRD **92**, 013013 (2015)]

PDG 2016: *r*^p_M

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

p MAGNETIC RADIUS

This is the rms magnetic radius, $\sqrt{\langle r_M^2 \rangle}$.

VALUE (fm)	DOCUMENT ID		TECN	COMMENT
0.776±0.034±0.017	¹ LEE	15	SPEC	Just 2010 Mainz data
● ● ● We do not use the following data for averages, fits, limits, etc. ● ●				
0.914 ± 0.035	LEE	15	SPEC	World data, no Mainz
0.87 ± 0.02	EPSTEIN	14		Using ep, en, $\pi\pi$ data
$0.867 \pm 0.009 \pm 0.018$	ZHAN	11	SPEC	Recoil polarimetry
$0.777 \pm 0.013 \pm 0.010$	BERNAUER	10	SPEC	$e p \rightarrow e p$ form factor
$0.876 \!\pm\! 0.010 \!\pm\! 0.016$	BORISYUK	10		Reanalyzes old $e p \rightarrow e p$ data
0.854 ± 0.005	BELUSHKIN	07		Dispersion analysis

¹Authors also provide values for a combination of all available data.

[Epstein, GP, Roy PRD **90**, 074027 (2014)] [Lee, Arrington, Hill, PRD **92**, 013013 (2015)]

Part 2: Hadronic Uncertainty?

[Hill, GP PRD 95, 094017 (2017), arXiv:1611.09917]

The bottom line

- Scattering:
- World e p data [Lee, Arrington, Hill '15] $r_E^p = 0.918 \pm 0.024$ fm
- Mainz e p data [Lee, Arrington, Hill '15] $r_E^p = 0.895 \pm 0.020$ fm
- Proton, neutron and π data [Hill , GP '10] $r_E^p = 0.871 \pm 0.009 \pm 0.002 \pm 0.002$ fm
- Muonic hydrogen
- [Pohl et al. Nature **466**, 213 (2010)] $r_{E}^{p} = 0.84184(67)$ fm
- [Antognini et al. Science **339**, 417 (2013)] $r_{F}^{p} = 0.84087(39)$ fm
- The bottom line:

using z expansion scattering disfavors muonic hydrogen

• Is there a problem with muonic hydrogen theory?

• Is there a problem with muonic hydrogen theory?

- Is there a problem with muonic hydrogen theory?
- Potentially yes! [Hill, GP PRL **107** 160402 (2011)]

- Is there a problem with muonic hydrogen theory?
- Potentially yes! [Hill, GP PRL 107 160402 (2011)]
- Muonic hydrogen measures ΔE and translates it to r_F^p
- [Pohl et al. Nature **466**, 213 (2010) Supplementary information] $\Delta E = 206.0573(45) - 5.2262(r_E^p)^2 + 0.0347(r_E^p)^3 \text{ meV}$

- Is there a problem with muonic hydrogen theory?
- Potentially yes! [Hill, GP PRL 107 160402 (2011)]
- Muonic hydrogen measures ΔE and translates it to r_F^p
- [Pohl et al. Nature **466**, 213 (2010) Supplementary information] $\Delta E = 206.0573(45) - 5.2262(r_E^p)^2 + 0.0347(r_E^p)^3 \text{ meV}$
- [Antognini et al. Science **339**, 417 (2013), Ann. of Phy. **331**, 127] $\Delta E = 206.0336(15) 5.2275(10)(r_E^p)^2 + 0.0332(20)$ meV
- Apart from r_E^p need two-photon exchange

Two photon exchange

$$W^{\mu\nu} = \frac{1}{2} \sum_{s} i \int d^{4}x \, e^{iq \cdot x} \langle k, s | T \{ J^{\mu}_{\text{e.m.}}(x) J^{\nu}_{\text{e.m.}}(0) \} | k, s \rangle$$

= $\left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) W_{1}(\nu, q^{2}) + \left(k^{\mu} - \frac{k \cdot q \, q^{\mu}}{q^{2}} \right) \left(k^{\nu} - \frac{k \cdot q \, q^{\nu}}{q^{2}} \right) W_{2}(\nu, q^{2})$

$$W^{\mu\nu} = \frac{1}{2} \sum_{s} i \int d^{4}x \, e^{iq \cdot x} \langle k, s | T \{ J^{\mu}_{\text{e.m.}}(x) J^{\nu}_{\text{e.m.}}(0) \} | k, s \rangle$$

= $\left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) W_{1}(\nu, q^{2}) + \left(k^{\mu} - \frac{k \cdot q \, q^{\mu}}{q^{2}} \right) \left(k^{\nu} - \frac{k \cdot q \, q^{\nu}}{q^{2}} \right) W_{2}(\nu, q^{2})$

 $u = 2k \cdot q =$ virtual photon energy, $Q^2 = -q^2$, virtual photon 4-momentum

$$W^{\mu\nu} = \frac{1}{2} \sum_{s} i \int d^{4}x \, e^{iq \cdot x} \langle k, s | T \{ J^{\mu}_{\text{e.m.}}(x) J^{\nu}_{\text{e.m.}}(0) \} | k, s \rangle$$

= $\left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) W_{1}(\nu, q^{2}) + \left(k^{\mu} - \frac{k \cdot q \, q^{\mu}}{q^{2}} \right) \left(k^{\nu} - \frac{k \cdot q \, q^{\nu}}{q^{2}} \right) W_{2}(\nu, q^{2})$

 $\nu = 2k \cdot q$ = virtual photon energy, $Q^2 = -q^2$, virtual photon 4-momentum • Dispersion relations

$$W_1(\nu,Q^2) = W_1(0,Q^2) + rac{
u^2}{\pi} \int_{
u_{
m cut}(Q^2)^2}^{\infty} d
u'^2 rac{{
m Im} W_1(
u',Q^2)}{
u'^2(
u'^2-
u^2)}$$

$$W_2(\nu, Q^2) = rac{1}{\pi} \int_{
u_{
m cut}(Q^2)^2}^{\infty} d
u'^2 rac{{
m Im} W_2(
u', Q^2)}{
u'^2 -
u^2}$$

• W₁ requires subtraction...

• In both cases apart from r_F^p we have two-photon exchange

- Imaginary part of TPE related to data: form factors, structure functions
- Cannot reproduce it from its imaginary part: Dispersion relation requires subtraction
- Need poorly constrained non-perturbative function $W_1(0, Q^2)$

• In both cases apart from r_F^p we have two-photon exchange

- Imaginary part of TPE related to data: form factors, structure functions
- Cannot reproduce it from its imaginary part: Dispersion relation requires subtraction
- Need poorly constrained non-perturbative function $W_1(0, Q^2)$
- W₁(0, Q²) is calculable in small Q² limit using NRQED [Hill, GP, PRL 107 160402 (2011)]

• You already know NRQED!

• You already know NRQED!

$$D_t = rac{\partial}{\partial t} + \textit{ieA}^0, \quad oldsymbol{D} = oldsymbol{
abla} - \textit{ie}oldsymbol{A}$$

• You already know NRQED!

$$D_t = rac{\partial}{\partial t} + i e A^0, \quad oldsymbol{D} = oldsymbol{
abla} - i e oldsymbol{A}$$

• Schrödinger equation: $iD_t + \frac{D^2}{2m_p}$

• You already know NRQED!

$$D_t = rac{\partial}{\partial t} + i e A^0, \quad oldsymbol{D} = oldsymbol{
abla} - i e oldsymbol{A}$$

• Schrödinger equation:
$$iD_t + \frac{D^2}{2m_p}$$

- Hydrogen Fine Structure:
- Spin-Orbit: $\boldsymbol{\sigma}\cdot \boldsymbol{B}$
- Relativistic correction: **D**⁴
- Darwin term: $\boldsymbol{\nabla} \cdot \boldsymbol{E}$

0

• You already know NRQED!

$$D_t = rac{\partial}{\partial t} + i e A^0, \quad oldsymbol{D} = oldsymbol{
abla} - i e oldsymbol{A}$$

• Schrödinger equation:
$$iD_t + \frac{D^2}{2m_p}$$

- Hydrogen Fine Structure:
- Spin-Orbit: $\boldsymbol{\sigma}\cdot \boldsymbol{B}$
- Relativistic correction: **D**⁴
- Darwin term: $\boldsymbol{\nabla} \cdot \boldsymbol{E}$
- Organize operators in $1/m_p$, Lagrangian form:

$$\mathcal{L}_{\mathsf{NRQED}} = \psi^{\dagger} \left\{ i D_t + \frac{\mathbf{D}^2}{2m_p} + \frac{\mathbf{D}^4}{8m_p^3} + c_F e \frac{\mathbf{\sigma} \cdot \mathbf{B}}{2m_p} + c_D e \frac{[\mathbf{\partial} \cdot \mathbf{E}]}{8m_p^2} + \cdots \right\} \psi$$

NRQED (NRQCD) Lagrangian

• The $1/m_p^2$ were given in Caswell, Lepage '86

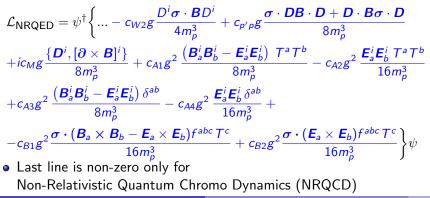
$$\mathcal{L}_{\text{NRQED}} = \psi^{\dagger} \left\{ iD_{t} + \frac{D^{2}}{2m_{p}} + \frac{D^{4}}{8m_{p}^{3}} + c_{F}g\frac{\sigma \cdot B}{2m_{p}} + c_{D}g\frac{[\partial \cdot E]}{8m_{p}^{2}} + ic_{S}g\frac{\sigma \cdot (D \times E - E \times D)}{8m_{p}^{2}} + c_{W1}g\frac{\{D^{2}, \sigma \cdot B\}}{8m_{p}^{3}}\right\}\psi$$

NRQED (NRQCD) Lagrangian

• The $1/m_p^2$ were given in Caswell, Lepage '86

$$\mathcal{L}_{\text{NRQED}} = \psi^{\dagger} \left\{ iD_{t} + \frac{D^{2}}{2m_{p}} + \frac{D^{4}}{8m_{p}^{3}} + c_{F}g\frac{\sigma \cdot B}{2m_{p}} + c_{D}g\frac{[\partial \cdot E]}{8m_{p}^{2}} + ic_{S}g\frac{\sigma \cdot (D \times E - E \times D)}{8m_{p}^{2}} + c_{W1}g\frac{\{D^{2}, \sigma \cdot B\}}{8m_{p}^{3}}\right\}\psi$$

• The $1/m_p^3$ were given in Manohar '97



NRQED Lagrangian $1/m_p^4$

• For some applications need also $1/m_p^4$

NRQED Lagrangian $1/m_p^4$

 For some applications need also 1/m⁴_p [Hill, Lee, GP, Solon, PRD 87 053017 (2013)]

$$\begin{aligned} \mathcal{L}_{\mathsf{NRQED}} &= \psi^{\dagger} \bigg\{ \dots + c_{X1g} \frac{[D^2, D \cdot \mathbf{E} + \mathbf{E} \cdot D]}{m_p^4} + c_{X2g} \frac{\{D^2, [\partial \cdot \mathbf{E}]\}}{m_p^4} \\ &+ c_{X3g} \frac{[\partial^2 \partial \cdot \mathbf{E}]}{m_p^4} + ic_{X4g}^2 \frac{\{D^i, [\mathbf{E} \times \mathbf{B}]^i\}}{m_p^4} \\ &+ ic_{X5g} \frac{D^i \sigma \cdot (\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D}) D^i}{m_p^4} + ic_{X6g} \frac{\epsilon^{ijk} \sigma^i D^j [\partial \cdot \mathbf{E}] D^k}{m_p^4} \\ &+ c_{X7g}^2 \frac{\sigma \cdot \mathbf{B}[\partial \cdot \mathbf{E}]}{m_p^4} + c_{X8g}^2 \frac{[\mathbf{E} \cdot \partial \sigma \cdot \mathbf{B}]}{m_p^4} + c_{X9g}^2 \frac{[\mathbf{B} \cdot \partial \sigma \cdot \mathbf{E}]}{m_p^4} \\ &+ c_{X10g}^2 \frac{[\mathbf{E}^i \sigma \cdot \partial B^i]}{m_p^4} + c_{X11g}^2 \frac{[B^i \sigma \cdot \partial E^i]}{m_p^4} \\ &+ c_{X12g}^2 \frac{\sigma \cdot \mathbf{E} \times [\partial_t \mathbf{E} - \partial \times \mathbf{B}]}{m_p^4} \bigg\} \psi \end{aligned}$$

• Method explained in [GP MPLA 30, 1550128 (2015)]

NRQED (NRQCD) Lagrangian beyond $1/m_p^4$

- This direct construction is very tedious:
- Not clear how many operators there are
- Are two given operators linearly independent?
- Not easy to generalize to $1/m_p^5$ $1/m_p^5$ can be used to control $W_1(0, Q^2)$
- Can we do better?

NRQED (NRQCD) Lagrangian beyond $1/m_p^4$

- This direct construction is very tedious:
- Not clear how many operators there are
- Are two given operators linearly independent?
- Not easy to generalize to $1/m_p^5$ $1/m_p^5$ can be used to control $W_1(0, Q^2)$
- Can we do better?
- Yes!
- The trick is to map NRQED (NRQCD) to HQET (Heavy Quark Effective Theory) *B*-meson matrix elements [Gunawardna, GP JHEP **1707** 137 (2017)]
- Allows to *construct* terms to arbitrary higher power in $1/m_p$

 Kobach and Pal have used the Hilbert series method to find the NRQED and NRQCD/HQET operators up to 1/m⁴_p.
 [Kobach, Pal PLB 772 225 (2017)]

- Kobach and Pal have used the Hilbert series method to find the NRQED and NRQCD/HQET operators up to 1/m⁴_p.
 [Kobach, Pal PLB 772 225 (2017)]
- "While the Hilbert series can count the number of operators that are invariant under the given symmetries, it does not say how the indices within each operator are contracted. In general, this needs to be done by hand." [Kobach, Pal PLB 772 225 (2017)]

- Kobach and Pal have used the Hilbert series method to find the NRQED and NRQCD/HQET operators up to 1/m⁴_p.
 [Kobach, Pal PLB 772 225 (2017)]
- "While the Hilbert series can count the number of operators that are invariant under the given symmetries, it does not say how the indices within each operator are contracted. In general, this needs to be done by hand." [Kobach, Pal PLB 772 225 (2017)]
- Imposing T invariance is an issue: "Unlike NRQED, we have not found an automated way to implement invariance under time reversal in NRQCD/HQET" [Kobach, Pal PLB 772 225 (2017)]

- Kobach and Pal have used the Hilbert series method to find the NRQED and NRQCD/HQET operators up to 1/m⁴_p.
 [Kobach, Pal PLB 772 225 (2017)]
- "While the Hilbert series can count the number of operators that are invariant under the given symmetries, it does not say how the indices within each operator are contracted. In general, this needs to be done by hand." [Kobach, Pal PLB 772 225 (2017)]
- Imposing T invariance is an issue: "Unlike NRQED, we have not found an automated way to implement invariance under time reversal in NRQCD/HQET" [Kobach, Pal PLB 772 225 (2017)]
- Still, a very useful check

NRQCD Lagrangian $1/m_p^4$

 Very recently 1/m⁴_p NRQCD Lagrangian also found [Gunawardna, GP JHEP 1707 137 (2017), Kobach, Pal PLB 772 225 (2017)] NRQCD Lagrangian $1/m_p^4$

 Very recently 1/m⁴_p NRQCD Lagrangian also found [Gunawardna, GP JHEP 1707 137 (2017), Kobach, Pal PLB 772 225 (2017)]

$$\begin{split} \mathcal{L}_{\text{NRQCD}} &= \psi^{\dagger} \Big\{ \dots c_{\text{X1}g} \frac{[D^{2}, \{D^{i}, E^{i}\}]}{m_{p}^{4}} + c_{\text{X2}g} \frac{\{D^{2}, [D^{i}, E^{i}]\}}{m_{p}^{4}} + c_{\text{X3}g} \frac{[D^{i}, [D^{i}, [D^{i}, [D^{i}, E^{i}]]]}{m_{p}^{4}} \\ &+ ic_{\text{X4}a} g^{2} \frac{\{D^{i}, e^{ijk} E^{i}_{a} B^{k}_{b} \{T^{a}, T^{b}\}\}}{2M^{4}} + ic_{\text{X4}b} g^{2} \frac{\{D^{i}, e^{ijk} E^{i}_{a} B^{k}_{b} \delta^{ab}\}}{m_{p}^{4}} + ic_{\text{X5}g} \frac{D^{i} \sigma \cdot (D \times E - E \times D)D^{i}}{m_{p}^{4}} \\ &+ ic_{\text{X6}g} \frac{e^{ijk} \sigma^{i} D^{j} [D^{i}, E^{i}] D^{k}}{m_{p}^{4}} + c_{\text{X7}a} g^{2} \frac{\{\sigma \cdot B_{a} T^{a}, [D^{i}, E^{i}]_{b} T^{b}\}}{2M^{4}} + c_{\text{X7}b} g^{2} \frac{\sigma \cdot B_{a} [D^{i}, e^{ijk} E^{i}_{a}]_{a}}{m_{p}^{4}} \\ &+ c_{\text{X8}a} g^{2} \frac{\{E^{i}_{a} T^{a}, [D^{i}, \sigma \cdot B]_{b} T^{b}\}}{2M^{4}} + c_{\text{X8}b} g^{2} \frac{E^{i}_{a} [D^{i}, \sigma \cdot B]_{a}}{m_{p}^{4}} + c_{\text{X9}a} g^{2} \frac{\{B^{i}_{a} T^{a}, [D^{i}, \sigma \cdot E]_{b} T^{b}\}}{2M^{4}} \\ &+ c_{\text{X8}a} g^{2} \frac{E^{i}_{a} [D^{i}, \sigma \cdot E]_{a}}{2M^{4}} + c_{\text{X10}a} g^{2} \frac{\{E^{i}_{a} T^{a}, [\sigma \cdot D, B^{i}]_{b} T^{b}\}}{2M^{4}} \\ &+ c_{\text{X9}b} g^{2} \frac{B^{i}_{a} [D^{i}, \sigma \cdot E]_{a}}{m_{p}^{4}} + c_{\text{X10}a} g^{2} \frac{\{E^{i}_{a} T^{a}, [\sigma \cdot D, B^{i}]_{b} T^{b}\}}{2M^{4}} \\ &+ c_{\text{X11}a} g^{2} \frac{\{B^{i}_{a} T^{a}, [\sigma \cdot D, E^{i}]_{b} T^{b}\}}{2M^{4}} + c_{\text{X11}b} g^{2} \frac{B^{i}_{a} [\sigma \cdot D, E^{i}]_{a}}{m_{p}^{4}} \\ &+ \tilde{c}_{\text{X12}b} g^{2} \frac{e^{ijk} \sigma^{i} E^{i}_{a} [D_{t}, E^{k}]_{a}}{m_{p}^{4}} + ic_{\text{X13}g}^{2} \frac{[E^{i}, [D_{t}, E^{i}]]}{m_{p}^{4}} \\ &+ ic_{\text{X12}b} g^{2} \frac{e^{ijk} \sigma^{i} E^{i}_{a} [D_{t}, E^{k}]_{a}}{m_{p}^{4}} + ic_{\text{X13}g}^{2} \frac{[E^{i}, [D_{t}, E^{i}]]}{m_{p}^{4}} \\ &+ ic_{\text{X12}b} g^{2} \frac{[E^{i}, (D \times B + B \times D)^{i}]}{m_{p}^{4}} \\ &+ c_{\text{X16}g}^{2} \frac{[E^{i}, (D \times B + B \times D)^{i}]}{m_{p}^{4}} \\ &+ c_{\text{X16}g}^{2} \frac{[E^{i}, (D \times S + B + C)^{i}]}{m_{p}^{4}} \\ &+ c_{\text{X16}g}^{2} \frac{[E^{i}, (D \times S + B + C)^{i}]}{m_{p}^{4}} \\ &+ c_{\text{X16}g}^{2} \frac{E^{i}_{a} (D \cdot \sigma + E^{i})}{m_{p}^{4}} \\ &+ c_{\text{X16}g}^{2} \frac{[E^{i}, (D \times B + B \times D)^{i}]}{m_{p}^{4}} \\ &+ c_{\text{X16}g}^{2} \frac{[E^{i}, (D \times B + B \times D)^{i}]}{m_{p}^{4}} \\ &+ c_{\text{X16}g}^{2} \frac{[E^{i}, (D \times B + B \times$$

NRQCD Lagrangian $1/m_p^4$

 Very recently 1/m⁴_p NRQCD Lagrangian also found [Gunawardna, GP JHEP 1707 137 (2017), Kobach, Pal PLB 772 225 (2017)]

$$\begin{split} \mathcal{L}_{\text{NRQCD}} &= \psi^{\dagger} \Big\{ \dots c_{\text{X1}}g \, \frac{[D^{2}, \{D^{i}, E^{i}\}]}{m_{p}^{4}} + c_{\text{X2}}g \, \frac{\{D^{2}, [D^{i}, E^{i}]\}}{m_{p}^{4}} + c_{\text{X3}}g \, \frac{[D^{i}, [D^{i}, [D^{i}, [D^{i}, E^{i}]]]}{m_{p}^{4}} \\ &+ ic_{\text{X4}a} g^{2} \, \frac{\{D^{i}, e^{ijk}E_{a}^{i}B_{b}^{k}\{T^{3}, T^{b}\}\}}{2M^{4}} + ic_{\text{X4}b} g^{2} \, \frac{\{D^{i}, e^{ijk}E_{a}^{i}B_{b}^{k}\delta^{ab}\}}{m_{p}^{4}} + ic_{\text{X5}}g \, \frac{D^{i}\sigma \cdot (D \times E - E \times D)D^{i}}{m_{p}^{4}} \\ &+ ic_{\text{X6}}g \, \frac{e^{ijk}\sigma^{i}D^{j}[D^{i}, E^{i}]D^{k}}{m_{p}^{4}} + c_{\text{X7}a} g^{2} \, \frac{\{\sigma \cdot B_{a}T^{a}, [D^{i}, E^{i}]_{b}T^{b}\}}{2M^{4}} + c_{\text{X7}b} g^{2} \, \frac{\sigma \cdot B_{a}[D^{i}, e^{i}]_{a}}{m_{p}^{4}} \\ &+ c_{\text{X8}} g^{2} \, \frac{\{E_{a}^{i}T^{a}, [D^{i}, \sigma \cdot B]_{b}T^{b}\}}{2M^{4}} + c_{\text{X8}b} g^{2} \, \frac{E_{a}^{i}[D^{i}, \sigma \cdot B]_{a}}{m_{p}^{4}} + c_{\text{X9}a} g^{2} \, \frac{\{B_{a}^{i}T^{a}, [D^{i}, \sigma \cdot E]_{b}T^{b}\}}{2M^{4}} \\ &+ c_{\text{X9}b} g^{2} \, \frac{B_{a}^{i}[D^{i}, \sigma \cdot E]_{a}}{m_{p}^{4}} + c_{\text{X10}a} g^{2} \, \frac{\{E_{a}^{i}T^{a}, [\sigma \cdot D, B^{i}]_{b}T^{b}\}}{2M^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{\{B_{a}^{i}T^{a}, [\sigma \cdot D, E^{i}]_{b}T^{b}\}}{2M^{4}} + c_{\text{X11}b} g^{2} \, \frac{B_{a}^{i}[\sigma \cdot D, E^{i}]_{a}}{m_{p}^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{\{B_{a}^{i}T^{a}, [G \cdot D, E^{i}]_{b}T^{b}\}}{2M^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{\{B_{a}^{i}T^{a}, [G \cdot D, E^{i}]_{b}T^{b}\}}{2M^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{\{B_{a}^{i}T^{a}, [G \cdot D, E^{i}]_{b}T^{b}\}}{2M^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{\{B_{a}^{i}T^{a}, [G \cdot D, E^{i}]_{a}}{m_{p}^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{\{B_{a}^{i}T^{a}, [G \cdot D, E^{i}]_{a}}{m_{p}^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{\{B_{a}^{i}(D \cdot E^{k}]_{a}}{2M^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{\{B_{a}^{i}(D \cdot E^{k}]_{a}}{m_{p}^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{[E^{i}, [D \cdot E^{k}]_{a}}{m_{p}^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{[E^{i}, (D \times B + B \times D)^{i}]}{m_{p}^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{[E^{i}, (D \times B + B \times D)^{i}]}{m_{p}^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{[E^{i}, (D \times B + B \times D)^{i}]}{m_{p}^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{[E^{i}, (D \times B + B \times D)^{i}]}{m_{p}^{4}} \\ &+ c_{\text{X11}a} g^{2} \, \frac{[E^{i}, (D \times B + B \times D)^{i}]}{m_{p}^{4}$$

• *Small Q*² limit using NRQED [Hill, GP, PRL **107** 160402 (2011)] The photon sees the proton "almost" like an elementary particle

• *Small Q*² limit using NRQED [Hill, GP, PRL **107** 160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$W_1(0, Q^2) = 2a_p(2+a_p) + \frac{Q^2}{m_p^2} \left\{ \frac{2m_p^3\bar{\beta}}{\alpha} - a_p - \frac{2}{3} \left[(1+a_p)^2 m_p^2 (r_M^p)^2 - m_p^2 (r_E^p)^2 \right] \right\} + \mathcal{O}\left(Q^4\right)$$

• *Small Q*² limit using NRQED [Hill, GP, PRL **107** 160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$W_1(0, Q^2) = 2a_p(2+a_p) + \frac{Q^2}{m_p^2} \left\{ \frac{2m_p^3\bar{\beta}}{\alpha} - a_p - \frac{2}{3} \left[(1+a_p)^2 m_p^2 (r_M^p)^2 - m_p^2 (r_E^p)^2 \right] \right\} + \mathcal{O}\left(Q^4\right)$$

-
$$a_p = 1.793$$
, $\beta = 2.5(4) \times 10^{-4}$ fm³
- $r_M = 0.776(34)(17)$ fm,
- $r_E^H = 0.8751(61)$ fm or $r_E^{\mu H} = 0.84087(26)(29)$ fm

$$W_1(0, Q^2) = 13.6 + \frac{Q^2}{m_p^2} (-54 \pm 7) + \mathcal{O}(Q^4)$$

• *Small Q*² limit using NRQED [Hill, GP, PRL **107** 160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$W_{1}(0, Q^{2}) = 2a_{p}(2+a_{p}) + \frac{Q^{2}}{m_{p}^{2}} \left\{ \frac{2m_{p}^{3}\bar{\beta}}{\alpha} - a_{p} - \frac{2}{3} \left[(1+a_{p})^{2}m_{p}^{2}(r_{M}^{p})^{2} - m_{p}^{2}(r_{E}^{p})^{2} \right] \right\} + \mathcal{O}\left(Q^{4}\right)$$

$$- a_{p} = 1.793, \ \bar{\beta} = 2.5(4) \times 10^{-4} \text{ fm}^{3}$$

$$- r_{M} = 0.776(34)(17) \text{ fm},$$

$$- r_{E}^{H} = 0.8751(61) \text{ fm or } r_{E}^{\mu H} = 0.84087(26)(29) \text{ fm}$$

$$W_{1}(0, Q^{2}) = 13.6 + \frac{Q^{2}}{m_{p}^{2}}(-54 \pm 7) + \mathcal{O}\left(Q^{4}\right)$$

Q²(GeV²)

• Need poorly constrained non-perturbative function $W_1(0, Q^2)$

- Need poorly constrained non-perturbative function $W_1(0, Q^2)$
- Calculable in *large Q²* limit using Operator Product Expansion (OPE)
 [J. C. Collins, NPB **149**, 90 (1979)]

The photon "sees" the quarks and gluons inside the proton

$$W_1(0,Q^2)=c/Q^2+\mathcal{O}\left(1/Q^4
ight)$$

- Result was used to estimate two photon exchange effects
- c calculated in [J. C. Collins, NPB 149, 90 (1979)]

RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS * Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

- Need poorly constrained non-perturbative function $W_1(0, Q^2)$
- Calculable in *large Q²* limit using Operator Product Expansion (OPE)
 [J. C. Collins, NPB **149**, 90 (1979)]

The photon "sees" the quarks and gluons inside the proton

$$W_1(0,Q^2)=c/Q^2+\mathcal{O}\left(1/Q^4
ight)$$

- Result was used to estimate two photon exchange effects
- c calculated in [J. C. Collins, NPB 149, 90 (1979)]

RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS * Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

• Was it?

$$W^{\mu\nu} = \frac{1}{2} \sum_{s} i \int d^4 x \, e^{iq \cdot x} \langle \mathbf{k}, s | T \{ J^{\mu}_{\text{e.m.}}(x) J^{\nu}_{\text{e.m.}}(0) \} | \mathbf{k}, s \rangle$$
$$= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) W_1 + \left(k^{\mu} - \frac{k \cdot q \, q^{\mu}}{q^2} \right) \left(k^{\nu} - \frac{k \cdot q \, q^{\nu}}{q^2} \right) W_2$$

• $W_1(0, Q^2)$ is dimensionless

$$W_1 \sim rac{\langle \mathsf{Proton} | \mathcal{O} | \mathsf{Proton}
angle}{Q^2} + \mathcal{O}\left(rac{1}{Q^4}
ight)$$

• O is a dimension 4 operator:

- Quarks: Spin 0: $m_q \bar{q} q$ Spin 2: $\bar{q} (iD^{\mu}\gamma^{\nu} + iD^{\nu}\gamma^{\mu} - \frac{1}{4}i \not D g^{\mu\nu})q$

- Gluons: must be color singlet: $G_a^{\alpha\beta}G_a^{\rho\sigma}$
- What gluon operators can we have?

• Gluons: must be color singlet $G_a^{\alpha\beta}G_a^{\rho\sigma}$ A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components:

- $G_{a}^{\alpha\beta}G_{a}^{\rho\sigma}$ • Gluons: must be color singlet A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components: - 1 scalar: $G^{\mu\nu}G_{\mu\nu} = 2(\vec{B}^2 - \vec{E}^2)$

- Gluons: must be color singlet $G_a^{\alpha\beta}G_a^{\rho\sigma}$ A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components:
- 1 scalar: $G^{\mu
 u}G_{\mu
 u} = 2(\vec{B}^2 \vec{E}^2)$
- 1 pseudo scalar: $\epsilon_{\alpha\beta\rho\sigma}G^{\alpha\beta}G^{\rho\sigma} = E \cdot B$: ruled out by parity

- Gluons: must be color singlet $G_a^{\alpha\beta}G_a^{\rho\sigma}$ A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components:
- 1 scalar: $G^{\mu
 u}G_{\mu
 u} = 2(ec{B^2} ec{E^2})$
- 1 pseudo scalar: $\epsilon_{lphaeta
 ho\sigma}G^{lphaeta}G^{
 ho\sigma}=E\cdot B$: ruled out by parity
- 9 components of traceless symmetric tensor: $G^{\mu\alpha}G^{\nu}_{\alpha} \frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}$ chromomagnetic stress-energy tensor
- What else? 10 components of

- Gluons: must be color singlet $G_a^{\alpha\beta}G_a^{\rho\sigma}$ A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components:
- 1 scalar: $G^{\mu\nu}G_{\mu\nu} = 2(\vec{B}^2 \vec{E}^2)$
- 1 pseudo scalar: $\epsilon_{lphaeta
 ho\sigma}G^{lphaeta}G^{
 ho\sigma}=E\cdot B$: ruled out by parity
- 9 components of traceless symmetric tensor: $G^{\mu\alpha}G^{\nu}_{\alpha} \frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}$ chromomagnetic stress-energy tensor
- What else? 10 components of

 $O^{\mu\alpha\nu\beta} = -\frac{1}{4} \left(\epsilon^{\mu\alpha\rho\sigma} \epsilon^{\nu\beta\kappa\lambda} + \epsilon^{\mu\beta\rho\sigma} \epsilon^{\nu\alpha\kappa\lambda} \right) G_{\rho\kappa}G_{\sigma\lambda} - \text{all possible traces}$ For example $O^{0123} = G^{01}G^{23} + G^{03}G^{21} = E^1B^1 - E^3B^3$

Gluon operators

- Gluons: must be color singlet $G_a^{\alpha\beta}G_a^{\rho\sigma}$ A product of (E^i, B^i) and (E^j, B^j) has $7 \times 6/2 = 21$ components:
- 1 scalar: $G^{\mu\nu}G_{\mu\nu} = 2(\vec{B}^2 \vec{E}^2)$
- 1 pseudo scalar: $\epsilon_{lphaeta
 ho\sigma}G^{lphaeta}G^{
 ho\sigma}=E\cdot B$: ruled out by parity
- 9 components of traceless symmetric tensor: $G^{\mu\alpha}G^{\nu}_{\alpha} \frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}$ chromomagnetic stress-energy tensor
- What else? 10 components of

$$O^{\mu\alpha\nu\beta} = -rac{1}{4} \left(\epsilon^{\mulpha
ho\sigma} \epsilon^{
ueta\kappa\lambda} + \epsilon^{\mueta
ho\sigma} \epsilon^{
ulpha\kappa\lambda}
ight) G_{
ho\kappa}G_{\sigma\lambda} - ext{all possible traces}$$

For example $O^{0123} = G^{01}G^{23} + G^{03}G^{21} = E^1B^1 - E^3B^3$

• For protons: $\langle Proton | O^{\mu\alpha\nu\beta} | Proton \rangle = 0$ What about $\langle Medium | O^{\mu\alpha\nu\beta} | Medium \rangle$? Solution looking for a problem...

Summary: Possible operators

- In total we have four operators with non-zero proton matrix elements.
- Quarks:
- Spin 0: m_qqq
- Spin 2: $\bar{q}(iD^{\mu}\gamma^{\nu}+iD^{\nu}\gamma^{\mu}-\frac{1}{4}i\not\!\!D\,g^{\mu\nu})q$
- Gluons:
- Spin 0: $G^{\mu\nu}G_{\mu\nu}$

- Spin 2:
$$G^{\mu\alpha}G^{\nu}_{\alpha} - \frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}$$

Summary: Possible operators

- In total we have four operators with non-zero proton matrix elements.
- Quarks:
- Spin 0: m_qqq
- Spin 2: $\bar{q}(iD^{\mu}\gamma^{\nu}+iD^{\nu}\gamma^{\mu}-\frac{1}{4}iD g^{\mu\nu})q$
- Gluons:
- Spin 0: $G^{\mu\nu}G_{\mu\nu}$

- Spin 2:
$$G^{\mu\alpha}G^{\nu}_{\alpha} - \frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}$$

RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS * Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

• In 1978 Collins calculated EM corrections to the nucleon mass with an emphasis on $m_n - m_p$

The mass only depends on spin-0 operators (q quark, $G^{\mu\nu}$ gluon)

$\langle P m_q\bar{q}q P\rangle, \qquad \langle P m_q\bar{q}q P\rangle$		$P G^{\mu u}G_{\mu u} P angle$	
	Quark	Gluon	
Spin-0	Collins '78	Collins '78	

• In 1978 Collins calculated EM corrections to the nucleon mass with an emphasis on $m_n - m_p$. The mass only depends on spin 0 operators (a quark $G^{\mu\nu}$ gluon

The mass only depends on spin-0 operators (q quark, $G^{\mu\nu}$ gluon)

$$\langle P|m_q\bar{q}q|P\rangle, \qquad \langle P|G^{\mu\nu}G_{\mu\nu}|P\rangle$$

	Quark	Gluon	
Spin-0	Collins '78	Collins '78	

• For $W_1(0, Q^2)$ you need also spin-2 operators

$$\langle P|\bar{q}(iD^{\mu}\gamma^{\nu}+iD^{\nu}\gamma^{\mu}-\frac{1}{4}i\not Dg^{\mu\nu})q|P\rangle, \qquad \langle P|G^{\mu\alpha}G^{\nu}_{\alpha}-\frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}|P\rangle$$

• In 1978 Collins calculated EM corrections to the nucleon mass with an emphasis on $m_n - m_p$. The mass only depends on spin 0 operators (a quark $G^{\mu\nu}$ gluon

The mass only depends on spin-0 operators (q quark, $G^{\mu\nu}$ gluon)

$$\langle P|m_q\bar{q}q|P\rangle, \qquad \langle P|G^{\mu\nu}G_{\mu\nu}|P\rangle$$

	Quark	Gluon	
Spin-0	Collins '78	Collins '78	

• For $W_1(0, Q^2)$ you need also spin-2 operators

$$\langle P|\bar{q}(iD^{\mu}\gamma^{\nu}+iD^{\nu}\gamma^{\mu}-\frac{1}{4}i\not Dg^{\mu\nu})q|P\rangle, \qquad \langle P|G^{\mu\alpha}G^{\nu}_{\alpha}-\frac{1}{4}G^{\alpha\beta}G_{\alpha\beta}g^{\mu\nu}|P\rangle$$

• Need to calculate the spin-2 contribution [Hill, GP arXiv:1611.09917]

	Quark	Gluon	
Spin-0	Collins '78	Collins '78	
Spin-2	Hill, GP '16	Hill, GP '16	

• Collins's result is not enough for muonic hydrogen!

• Requires 1-loop calculation

• Requires 1-loop calculation

• Doing that, we found a mistake in Collins spin-0 calculation from 1978...

• Requires 1-loop calculation

- Doing that, we found a mistake in Collins spin-0 calculation from 1978...
- Collins didn't calculate the spin-0 gluon contribution directly He extracted it from another calculation

• Requires 1-loop calculation

- Doing that, we found a mistake in Collins spin-0 calculation from 1978...
- Collins didn't calculate the spin-0 gluon contribution directly He extracted it from another calculation
- For three light quark u, d, sCorrect result: $\sum_{q} e_q^2 = (\frac{2}{3})^2 + (\frac{1}{3})^2 + (\frac{1}{3})^2 = \frac{2}{3}$ Collins: $\sum_{q} = 3$ Too large by a factor of 4.5...

1978:

RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS * Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

2016:

Corrigendum to "Renormalization of the Cottingham formula" [Nucl. Phys. B 149 (1979) 90–100]

John C. Collins

Department of Physics, Penn State University, University Park, PA 16802, USA Received 19 December 2016; accepted 20 December 2016

Acknowledgements

I thank Richard Hill and Gil Paz for pointing out the important error about the coefficient of the gluonic operator, as reported in Ref. [2]. This work was supported in part by the U.S. Department of Energy under Grant No. DE-SC0013699.

References

- [1] J.C. Collins, Renormalization of the Cottingham formula, Nucl. Phys. B 149 (1979) 90–100, http://dx.doi.org/10. 1016/0550-3213(79)90158-5, Nucl. Phys. B 153 (1979) 546 (Erratum).
- [2] R.J. Hill, G. Paz, Nucleon spin-averaged forward virtual Compton tensor at large Q^2 , arXiv:1611.09917.

Large Q^2 behavior			
	Quark	Gluon	
Spin-0	Collins '78	Collins '78	Hill, GP '16
Spin-2	Hill, GP '16	Hill, GP '16	_

Large Q^2 behavior			
	Quark	Gluon	
Spin-0	Collins '78	Collins '78	Hill, GP '16
Spin-2	Hill, GP '16	Hill, GP '16	_

0

- Even worse, quark spin-0 and gluon spin-0 come with opposite signs After correcting the mistake they largely cancel W₁(0, Q²) is **dominated** by spin-2 contribution
- Lesson: It is important to do a full calculation

Large Q^2 behavior			
	Quark	Gluon	
Spin-0	Collins '78	Collins '78	Hill, GP '16
Spin-2	Hill, GP '16	Hill, GP '16	_

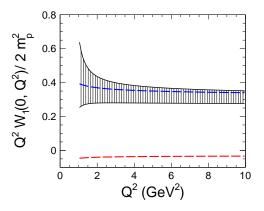
- Even worse, quark spin-0 and gluon spin-0 come with opposite signs After correcting the mistake they largely cancel W₁(0, Q²) is **dominated** by spin-2 contribution
- Lesson: It is important to do a full calculation
- Some good news: The mistake has no effect on m_n m_p since gluon contribution is the same at lowest order in isospin breaking

Large Q^2 behavior			
	Quark	Gluon	
Spin-0	Collins '78	Collins '78	Hill, GP '16
Spin-2	Hill, GP '16	Hill, GP '16	_

- Even worse, quark spin-0 and gluon spin-0 come with opposite signs After correcting the mistake they largely cancel W₁(0, Q²) is **dominated** by spin-2 contribution
- Lesson: It is important to do a full calculation
- Some good news: The mistake has no effect on m_n m_p since gluon contribution is the same at lowest order in isospin breaking
- Flip side: You cannot use $m_n m_p$ to constrain muonic hydrogen

Large Q^2 behavior: Total contribution

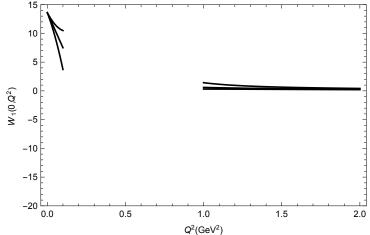
• The total contribution



- Dashed red: spin 0
- Dashed blue: spin 2
- Vertical stripes: total contribution with perturbative and hadronic errors added in quadrature

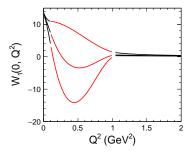
- Simple modeling: use OPE for $Q^2 \ge 1 \text{ GeV}^2$
- Model unknown Q^4 : add $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$ with Λ_Lpprox 500 MeV
- Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV

- \bullet Simple modeling: use OPE for $Q^2 \geq 1 \ {\rm GeV^2}$
- Model unknown Q^4 : add $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$ with Λ_Lpprox 500 MeV
- Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV
- How to connect the curves?

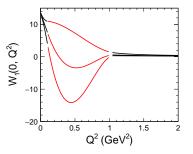


- Simple modeling: use OPE for $Q^2 \ge 1 \ {
 m GeV}^2$
- Model unknown Q^4 : add $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$ with Λ_Lpprox 500 MeV
- Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV
- Interpolating:

- \bullet Simple modeling: use OPE for $Q^2 \geq 1 \ {\rm GeV}^2$
- Model unknown Q^4 : add $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$ with Λ_Lpprox 500 MeV
- Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV
- Interpolating:



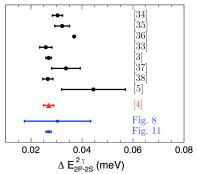
- \bullet Simple modeling: use OPE for ${\it Q}^2 \geq 1 {\rm ~GeV}^2$
- Model unknown Q^4 : add $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$ with Λ_Lpprox 500 MeV
- Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV
- Interpolating:



- Energy contribution: $\delta E(2S)^{W_1(0,Q^2)} \in [-0.046 \text{ meV}, -0.021 \text{ meV}]$ To explain the puzzle need this to be $\sim 0.3 \text{ meV}$
- Caveats: OPE might be only valid for larger Q²
 W₁(0, Q²) might be different than the interpolated lines

Two Photon Exchange: Other approaches

• Similar results found by other groups



- [34] K. Pachucki, PRA 60, 3593 (1999).
- [35] A. P. Martynenko, Phys. At. Nucl. 69, 1309 (2006).
- [36] D. Nevado and A. Pineda, PRC 77, 035202 (2008).
- [33] C. E. Carlson and M. Vanderhaeghen, PRA 84, 020102 (2011).
- [3] M. C. Birse and J. A. McGovern, EPJA 48, 120 (2012).
- [37] Gorchtein, Llanes-Estrada, Szczepaniak, PRA 87, 052501 (2013).
- [38] J. M. Alarcon, V. Lensky, and V. Pascalutsa, EPJC 74, 2852 (2014).
- [5] C. Peset and A. Pineda, Nucl. Phys. B887, 69 (2014).
- [4] Antognini, Kottmann, Biraben, Indelicato, Nez, Pohl, Ann. Phys. 331, 127 (2013).
- [Fig. 8] Hill, GP PRD 95, 094017 (2017).

Experimental test

- How to test?
- New experiment: μ p scattering MUSE (MUon proton Scattering Experiment) at PSI [R. Gilman et al. (MUSE Collaboration), arXiv:1303.2160]

 Need to connect muon-proton scattering and muonic hydrogen can use a new effective field theory: QED-NRQED [Hill, Lee, GP, Mikhail P. Solon, PRD 87 053017 (2013)] [Steven P. Dye, Matthew Gonderinger, GP, PRD 94 013006 (2016)]

Part 3: Connecting muon-proton scattering and muonic hydrogen

MUSE

• Muonic hydrogen:

Muon momentum $\sim m_\mu c lpha \sim 1~{
m MeV} \ll m_\mu, m_p$ Both proton and muon non-relativistic

MUSE

• Muonic hydrogen:

Muon momentum $\sim m_\mu c lpha \sim 1~{
m MeV} \ll m_\mu, m_p$ Both proton and muon non-relativistic

MUSE:

Muon momentum $\sim m_\mu \sim 100$ MeV Muon is relativistic, proton is still non-relativistic

MUSE

• Muonic hydrogen:

Muon momentum $\sim m_\mu c lpha \sim 1~{
m MeV} \ll m_\mu, m_p$ Both proton and muon non-relativistic

MUSE:

Muon momentum $\sim m_\mu \sim 100$ MeV Muon is relativistic, proton is still non-relativistic

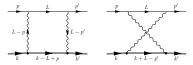
- QED-NRQED effective theory:
- Use QED for muon
- Use NRQED for proton

 $m_\mu/m_p\sim 0.1$ as expansion parameter

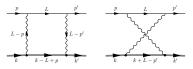
 A new effective field theory suggested in [Hill, Lee, GP, Mikhail P. Solon, PRD 87 053017 (2013)]

• Example: TPE at the lowest order in $1/m_p$

[Steven P. Dye, Matthew Gonderinger, GP, PRD 94 013006 (2016)]



• Example: TPE at the lowest order in $1/m_p$ [Steven P. Dye, Matthew Gonderinger, GP, PRD **94** 013006 (2016)]

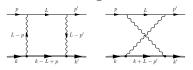


QED-NRQED result

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 4E^2 \left(1 - v^2 \sin^2 \frac{\theta}{2}\right)}{\vec{q}^4} \left[1 + \frac{Z \alpha \pi v \sin \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2}\right)}{1 - v^2 \sin^2 \theta}\right]$$

Z=1,~E= muon energy, $v=ert ec{p}ert/E,~q=p'-p, heta$ scattering angle

Example: TPE at the lowest order in 1/m_p
 [Steven P. Dye, Matthew Gonderinger, GP, PRD 94 013006 (2016)]



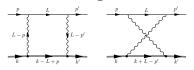
QED-NRQED result

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 4E^2 \left(1 - v^2 \sin^2 \frac{\theta}{2}\right)}{\vec{q}^4} \left[1 + \frac{Z \alpha \pi v \sin \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2}\right)}{1 - v^2 \sin^2 \theta}\right]$$

Z=1,~E= muon energy, $v=ert ec{p}ert/E,~q=p'-p, heta$ scattering angle

 Same result as scattering relativistic lepton off static 1/r potential [Dalitz, Proc. Roy. Soc. Lond. 206, 509 (1951)] reproduced in [Itzykson, Zuber, "Quantum Field Theory"]

Example: TPE at the lowest order in 1/m_p
 [Steven P. Dye, Matthew Gonderinger, GP, PRD 94 013006 (2016)]



QED-NRQED result

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 4 E^2 \left(1 - v^2 \sin^2 \frac{\theta}{2}\right)}{\vec{q}^4} \left[1 + \frac{Z \alpha \pi v \sin \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2}\right)}{1 - v^2 \sin^2 \theta}\right]$$

Z=1,~E= muon energy, $v=ert ec{p}ert/E,~q=p'-p, heta$ scattering angle

- Same result as scattering relativistic lepton off static 1/r potential [Dalitz, Proc. Roy. Soc. Lond. 206, 509 (1951)] reproduced in [Itzykson, Zuber, "Quantum Field Theory"]
- Same result as $m_p \to \infty$ of "point particle proton" QED scattering (For $m_p \to \infty$ only proton charge is relevant)

QED-NRQED Effective Theory beyond $m_p ightarrow \infty$ limit

- QED-NRQED allows to calculate $1/m_p$ corrections
- Example: one photon exchange μ + p → μ + p: QED-NRQED = 1/m_p expansion of form factors [Steven P. Dye, Matthew Gonderinger, GP, PRD 94 013006 (2016)]

Matching

QED, QCD $G_{E,M}$, Structure func., $W_1(0, Q^2)$

Matching

QED, QCD $G_{E,M}$, Structure func., $W_1(0, Q^2)$ Scale: $m_p \sim 1 \text{ GeV}$

Matching

QED, QCD $G_{E,M}$, Structure func., $W_1(0, Q^2)$ Scale: $m_p \sim 1$ GeV \Downarrow QED-NRQED: MUSE $r_{E}^p, \ \bar{\mu}\gamma^0\mu\psi_p^\dagger\psi_p$

Matching

QED, QCD $G_{E,M}$, Structure func., $W_1(0, Q^2)$ Scale: $m_p \sim 1 \text{ GeV}$ \Downarrow QED-NRQED: MUSE $r_E^p, \ \bar{\mu}\gamma^0\mu\psi_p^\dagger\psi_p$ Scale: $m_\mu \sim 0.1 \text{ GeV}$ \Downarrow

Connecting muon-proton scattering to muonic hydrogen

Matching

QED, QCD $G_{E,M}$, Structure func., $W_1(0, Q^2)$ Scale: $m_p \sim 1$ GeV \Downarrow QED-NRQED: MUSE r_E^p , $\bar{\mu}\gamma^0\mu\psi_p^\dagger\psi_p$ Scale: $m_\mu \sim 0.1$ GeV \Downarrow NRQED-NRQED: muonic H r_E^p , $\psi_\mu^\dagger\psi_\mu\psi_p^\dagger\psi_p$

Connecting muon-proton scattering to muonic hydrogen

Matching

 $G_{F,M}$, Structure func., $W_1(0, Q^2)$ QED. QCD Scale: $m_p \sim 1 \text{ GeV}$ ∜ $r_{F}^{p}, \ \bar{\mu}\gamma^{0}\mu\psi_{P}^{\dagger}\psi_{P}$ QED-NRQED: MUSE Scale: $m_{\mu} \sim 0.1 \text{ GeV}$ ∜ $r_{\rm F}^{\rm p}, \psi_{\mu}^{\dagger}\psi_{\mu}\psi_{\mu}^{\dagger}\psi_{\mu}\psi_{\mu}$ NRQED-NRQED: muonic H • Need to match QED-NRQED contact interaction, e.g. $\bar{\mu}\gamma^{0}\mu\psi_{n}^{\dagger}\psi_{n}$ to NRQED-NRQED contact interaction, e.g. $\psi^{\dagger}_{\mu}\psi_{\mu}\psi^{\dagger}_{\rho}\psi_{\rho}$ [Dye, Gonderinger, GP in progress]

Connecting muon-proton scattering to muonic hydrogen

To do list:

- 1) Relate QED-NRQED contact interactions to NRQED contact interactions and $W_1(0, Q^2)$
- 2) Calculate $d\sigma(\mu + p \rightarrow \mu + p)$ and asymmetry in terms of r_E^p and TPE
- 3) Direct relation between μ -p scattering and muonic H

Proton radius puzzle: Latest developments

• Published October 2017: New regular hydrogen measurement 2S - 4P Germany

[Beyer et al., Science 358, 79 (2017)] $r_F^p = 0.83(1)$ fm

Proton radius puzzle: Latest developments

• Published October 2017: New regular hydrogen measurement 2S - 4P Germany

[Beyer et al., Science 358, 79 (2017)] $r_E^p = 0.83(1)$ fm

• Published May 2018: New regular hydrogen measurement 1S - 3S France

[Fleurbaey et al., PRL **120**, 183001 (2018)] $r_F^P = 0.88(1)$ fm

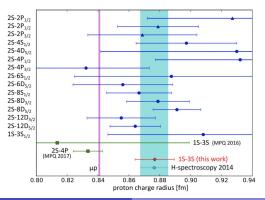
Proton radius puzzle: Latest developments

• Published October 2017: New regular hydrogen measurement 2S - 4P Germany

[Beyer et al., Science 358, 79 (2017)] $r_E^p = 0.83(1)$ fm

• Published May 2018: New regular hydrogen measurement 1S - 3S France

[Fleurbaey et al., PRL **120**, 183001 (2018)] $r_F^P = 0.88(1)$ fm



Proton radius puzzle: Future developments

- PRad: New low Q² e p scattering experiment
 Proton radius results in summer 2018
- July 2018: the 4th proton radius puzzle workshop at Mainz Germany [Organizers: Richard J. Hill, GP, Randolf Pohl]
- MUSE: new μ p scattering experiment
 Data taking starting mid 2018
 [MUSE Collaboration TDR, arXiv:1709.09753 [physics.ins-det]]

- Proton radius puzzle: $> 5\sigma$ discrepancy between
- r_E^p from muonic hydrogen
- r_E^p from hydrogen and e p scattering
- After almost 8 years the origin is still not clear
- 1) Is it a problem with the electronic extraction?
- 2) Is it a hadronic uncertainty?
- 3) is it new physics?
 - Motivates a reevaluation of our understanding of the proton

• Presented three topics:

- Presented three topics:
- Extraction of proton radii from scattering: Use an established tool of the *z* expansion Studies disfavor the muonic hydrogen value

- Presented three topics:
- Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
- 2) The first *full* and *correct* evaluation of large Q^2 behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects

- Presented three topics:
- Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
- 2) The first *full* and *correct* evaluation of large Q^2 behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects
- 3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED

- Presented three topics:
- Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
- 2) The first *full* and *correct* evaluation of large Q^2 behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects
- 3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED
 - Much more work to do!
 - Thank you