Searching for (light) dark matter (by doping helium in xenon)

Hugh Lippincott, Fermilab

KITP
HEP at the Sensitivity Frontier
April 24, 2018

The case for dark matter

How do we find it? Direct Detection

- Calculate rate based on assumptions about the dark matter distribution and interaction
- Historically two interactions are considered (by DM experimentalists)
 - Spin independent (SI) couples to all nucleons
 - Enhancement for large nuclei
 - Spin dependent (SD) couples to the spin of the nucleus (unpaired spin of one nucleon)

Rate calculation

The differential cross section (for spin-independent interactions) in events/kg/keV mass per unit recoil energy is

$$\frac{dR}{dQ} = \frac{\rho_0}{m_\chi} \times \frac{\sigma_0 A^2}{2\mu_p^2} \times F^2(Q) \times \int_{V_m} \frac{f(v)}{v} dv \tag{3}$$

- Dark matter density component, from local and galactic observations with historically a factor of 2 uncertainty
- The unknown particle physics component σ_0 (where $\mu_p = m_p m_\chi/(m_p + m_\chi)$ is the reduced mass of the proton)
 - Proportional to A² for most models
- The nuclear part, approximately given by $F^2(Q) \propto e^{-Q/Q_0}$ where $Q_0 \sim \frac{80}{A^{5/3}}$ MeV
- The velocity distribution of dark matter in the galaxy of order 30% uncertainty (not-statistical), and $v_m = \sqrt{Qm_N/2m_r^2}$ (here $m_r = m_N m_\chi/(m_N + m_\chi)$ is the reduced mass of the nucleus)

The energy scale

- Energy of recoils is O(keV)
- Entirely driven by kinematics, elastic scattering of things with approximately similar masses (100 GeV) and $v \sim 0.001c$

$$\frac{1}{2}m_N v_N^2 = \frac{1}{2} \times 100 \,\text{GeV} \times 10^{-6} = 50 \,\text{keV}$$

How do we find it?

Very low rate process (~events/year)

Rate depends crucially on WIMP mass and threshold

How do we find it?

Very low rate process (~events/year)

Rate depends crucially on WIMP mass and threshold

- Limited at low mass by detector threshold
- Limited at high mass by density
- Eventually limited by neutrinos

So we look for WIMPs

 A billion WIMPs pass through us per second - we might expect a handful of counts in a detector per year

So we look for WIMPs

- A billion WIMPs pass through us per second we might expect a handful of counts in a detector per year
- The problem is that background radioactivity is everywhere!

100 events/second/kg = 3,000,000,000,000 events/year in a ton-scale experiment

Backgrounds!

Background sources

- Cosmic rays are constantly streaming through
 - All experiments have to go underground to get away from cosmic rays

Background sources

- Cosmic rays are constantly streaming through
 - All experiments have to go underground to get away from cosmic rays
- Radioactive contaminants rock, radon in air, impurities
 - Emphasis on purification and shielding

Background sources

- Cosmic rays are constantly streaming through
 - All experiments have to go underground to get away from cosmic rays
- Radioactive contaminants rock, radon in air, impurities
 - Emphasis on purification and shielding
- The detector itself steel, glass, detector components
 - Self-shielding to leave a clean inner region
 - Discrimination can you tell signal from background (gamma rays, alphas, neutrons, etc)?

Electronic recoils (gammas) vs. nuclear

recoils (WIMPs)

CDMS - Charge **Bulk electron recoils** Surface electron recoils **Nuclear recoils** recoil energy 10-100 keV Ionization Yield 0.0 0.2

20

25

Xenon TPCs -Charge to light

to heat

Argon - Pulse

Custom dark matter detectors

Challenge	Solution
Extremely rare interaction	Large target mass - scalable
Energy depositions of ~10 keV or below	Low energy thresholds
Backgrounds - Impurities	Purification
Backgrounds - Detector	Self shielding
Backgrounds - Internal/Detector	Discrimination
Unknown particle physics	Sensitivity to multiple types interaction

WIMPs

- Most discussed candidate is Weakly Interacting Massive Particle
 - Produced during big bang
 - Decouples from ordinary matter as the universe expands and cools
 - Still around today with densities of about a few per liter

 Supersymmetry produces a theoretical candidate (LSP), but others exist (e.g. Kaluza-Klein particles, ...)

$$<\sigma v>_{ann} \approx 3 \times 10^{-26} \text{cm}^3 \text{sec}^{-1}$$

 $\approx \frac{\alpha^2}{(200 \text{GeV})^2}$

Coupling e.g. to light quarks

$$\sigma_0 \approx \frac{G_f^2 \mu^2}{2\pi} \sim 10^{-39} \text{cm}^2$$

$$<\sigma v>_{ann} \approx 3 \times 10^{-26} \text{cm}^3 \text{sec}^{-1}$$

 $\approx \frac{\alpha^2}{(200 \text{GeV})^2}$

Coupling proportional to mass (e.g. via higgs)

$$g \sim 1 \Rightarrow y_p \sim \frac{1}{\text{few}} \frac{m_p}{v}$$
$$\sigma_0 \sim 10^{-39} \text{cm}^2 \times 10^{-6}$$
$$\sim 10^{-45} \text{cm}^2$$

"This era will answer the question: does the dark matter couple at O(0.1) to the Higgs boson"

N. Weiner, CIPANP 2015

The case for dark matter

- We know it interacts gravitationally
- It is "dark" should not interact with light or electromagnetism
- Nearly collision less
- Slow

DM Prognosis?

Bad news: DM-SM interactions are not obligatory

If nature is unkind, we may never know the right scale

DM Prognosis?

Bad news: DM-SM interactions are not obligatory

If nature is unkind, we may never know the right scale

Good news: most *discoverable* DM candidates are in thermal equilibrium with us in the early universe

Why is this good news?

Thermal dark matter

- "Most discoverable DM candidates are in thermal equilibrium" G. Krnjaic
 - If we can detect it, it's likely that it was in equilibrium (e.g. interacted enough)
 - Thermal dark matter has minimum annihilation rate (to set relic density)
 - Doesn't care about initial conditions (washed out by thermal bath) makes modeling easier
 - Limited viable mass range (to a range that is basically within reach)

Thermal dark matter

Are there actual candidates?

 Annihilation cross section needed for the relic abundance

$$<\sigma v>_{ann}\approx 3\times 10^{-26} \text{cm}^3 \text{sec}^{-1}$$

- New weak scale particle has to be heavier than ~a few GeV
 - Lee and Weinberg, PRL 39 (1977) 165-168

$$\chi$$

$$W, Z$$

$$\chi$$

$$f$$

$$\sigma v \sim \frac{\alpha^2 m_\chi^2}{m_Z^4} \sim 10^{-29} \text{cm}^3 \text{s}^{-1} \left(\frac{m_\chi}{\text{GeV}}\right)^2$$

Are there actual candidates?

- Light dark matter needs new forces (although we might already be there in canonical WIMP dark matter anyway)
 - Asymmetric DM
 - Secluded DM
 - Forbidden DM
 - SIMP
 - ELDER
 - Freeze in models

US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report

1707.04591

Are there actual candidates?

- Light dark matter needs new forces (although we might already be there in canonical WIMP dark matter anyway)
 - Asymmetric DM
 - Secluded DM
 - Forbidden DM
 - SIMP
 - ELDER
 - Freeze in models

US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report

1707.04591

What do you need for low mass?

$$\frac{dR}{dQ} = \frac{\rho_0}{m_\chi} \times \frac{\sigma_0 A^2}{2m_p^2} \times F^2(Q) \times \int_{v_m}^{v_{esc}} \frac{f(v)}{v} dv$$

$$\frac{dR}{dQ} = \frac{\rho_0}{m_\chi} \times \frac{\sigma_0 A^2}{2m_p^2} \times F^2(Q) \times \int_{v_m}^{v_{esc}} \frac{f(v)}{v} dv$$

$$\frac{dR}{dQ} = \frac{\rho_0}{m_\chi} \times \frac{\sigma_0 A^2}{2m_p^2} \times F^2(Q) \times \left(\int_{v_m}^{v_{esc}} \frac{f(v)}{v} dv\right)$$

Energy threshold (keV)

$$\frac{dR}{dQ} = \frac{\rho_0}{m_\chi} \times \frac{\sigma_0 A^2}{2m_p^2} \times F^2(Q) \times \left(\int_{v_m}^{v_{esc}} \frac{f(v)}{v} dv\right)$$

$$v_m = \sqrt{Qm_N/2m_r^2} \qquad v_{esc} = 544 \,\mathrm{km/s} \,\mathrm{(current value)}$$

$$m_N \,\mathrm{is \ mass \ of \ nucleus} \qquad m_r = \frac{m_N m_\chi}{m_N + m_\chi}$$

- Low threshold
- Low mass target (for better kinematic match to the dark matter mass)
 - For given Q, v_m is minimized when $m_n = m_\chi$

Light targets less sensitive to halo uncertainty

Custom dark matter detectors

Challenge	Solution
Extremely rare interaction	Large target mass - scalable
Energy depositions of ~10 keV or below	Low energy thresholds
Backgrounds - Impurities	Purification
Backgrounds - Detector	Self shielding
Backgrounds - Internal/Detector	Discrimination
Unknown particle physics	Sensitivity to multiple types interaction

Custom dark matter detectors light

Challenge	Solution
Extremely rare interaction	Large target mass - scalable
Energy depositions of ~1 keV or below	Very Low energy thresholds
Backgrounds - Impurities	Purification
Backgrounds - Detector	Self shielding
Backgrounds - Internal/Detector	Discrimination
Unknown particle physics	Sensitivity to multiple types interaction
Kinematics	Light target

A lot of mass

Custom dark matter detectors light

Challenge	Solution
Extremely rare interaction	Large target mass - scalable
Energy depositions of ~1 keV or below	Very Low energy thresholds
Backgrounds - Impurities	Purification
Backgrounds - Detector	Self shielding
Backgrounds - Internal/Detector	Discrimination
Unknown particle physics	Sensitivity to multiple types interaction
Kinematics	Light target

LUX-Zeplin (LZ)

- 7 tonne active LXe TPC
 - Excellent self shielding
 - Good discrimination
 - Low threshold (<3 keV)
 - Huge effort to make it clean and low background
 - Is going to exist!
 - Heavy target

LUX-Zeplin (LZ)

- 7 tonne active LXe TPC
 - Excellent self shielding
 - Good discrimination
 - Low threshold (<3 keV)
 - Huge effort to make it clean and low background
 - Is going to exist!
 - Heavy target

Wouldn't it be great if we could put a light atomic target in LZ?

He-Doped LUX-Zeplin (HeLZ)

- 7 tonne active LXe TPC
 - Excellent self shielding
 - Good discrimination
 - Low threshold (<3 keV)
 - Huge effort to make it clean and low background
 - Is going to exist!
 - Heavy target

Wouldn't it be great if we could put a light atomic target in LZ?

Dissolving He in LXe?

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 29, NUMBER 1

JULY, 1958

Solubility of Helium and Neon in Liquid Argon. An Approximation to the Entropy of Lattice Vacancy Formation in Liquid Argon*

F. E. KARASZ† AND G. D. HALSEY, JR.‡

Department of Chemistry, University of Washington, Seattle, Washington

(Received January 14, 1958)

Fig. 1. Details of cell: A, stems; C, Teflon spacer; D, clamp to hold stems; E, vapor pressure thermometer for cryostat control; F, electric contact; G, steel container; H, stem heaters; K, asbestos insulation; L, top plate; M, nylon supporting lines; N, pumping line for cryostat; O, rubber gasket; R, electromagnetic agitator; S, brass sleeves; Th_1 , Th_2 , Th_3 , copper-constantan thermocouples; V, 4 1. Dewar vessel.

- Data exists for LAr
- Not promising
 - 2e-5 mass fraction at 1 atm of partial pressure
- No published data in LXe

Dissolving He in LXe?

- LUX fill data
- Some residual He in the source bottles
- Data imply 3e-3
 mass fraction for 1
 atm partial pressure

A lot of mass

Backgrounds

- The longest known radioisotope of He (⁶He) decays in <1 s
 - No new backgrounds introduced

Size of LZ	Size of 10 kg LHe
150 x 150 cm	30 x 30 cm

Self shielding is not effective in He-only detector

Signal detection

Signal detection

Signal detection

- Even if we get direct excitation of helium:
 - Helium scintillate in harder UV
 - 80 nm vs 175 nm in LXe
 - Those photons will wavelength shift in the xenon to 175 nm
 - ppm levels of Xe in LAr lead to near complete shift to Xe wavelength
- Keep same photon detection scheme!

 There are three ways for recoiling particles in our energy range to lose energy in liquid xenon:

Heat: This energy is undetectable for LZ

 Excitation: Produces scintillation light as it de-excites, measured as S1

$$Xe^* + Xe \rightarrow Xe_2^* \rightarrow 2Xe + \gamma$$
 (simplified)

Ionization: Can be extracted by an external electric field, measured as S2

Or can recombine and give scintillation photon (S1)

$$Xe + Xe^+ + e^- \rightarrow Xe_2^* \rightarrow 2Xe + \gamma$$
 (simplified)

- Xenon recoils in LXe lose a lot of energy to heat (Lindhard factor)
 - Less than 20% of a ~<7 keV recoil goes into detectable signal
 - The rest goes into nuclear collisions that lead to heat

Helium is a light nucleus - fewer strong nuclear collisions

Modeling He recoils in LXe (v1)

- Stopping and Range of Ions in Matter (SRIM)
- Calculate the energy lost to nuclear (heat) and electronic (signal) stopping

10 keV Xe in LXe ~100 A ranges

10 keV He in LXe ~1000 A ranges

Modeling He recoils in LXe (v1)

- Stopping and Range of Ions in Matter (SRIM)
- Calculate the energy lost to nuclear (heat) and electronic (signal) stopping

Modeling He recoils in LXe (v2)

- Noble Element
 Simulation
 Technique (NEST)
 - Szydagis et al, and others: http:// nest.physics.ucda vis.edu/site/
- Data driven model for signal processes in LXe
- NEST v2.0 about to come out

Modeling He recoils in LXe (v2)

- Alpha data from LUX and test chambers incorporated into NEST2.0
- High energies, but at least it's real He nuclei in LXe

Modeling He recoils in LXe (v1+2)

Difference leads to ER/NR discrimination

What happens to S2/S1 partitioning?

CRESST data in scintillating bolometers

NB: Different microphysical process (heat v. electronic)

What does it look like in LZ?

- Put this all together into single model
- Use the LZ Geant4 detector and optical transport model
 - See "Projected Sensitivity of LZ" (1802.06039)
- For S1/S2 analysis, threshold is determined by S1
 - Partitioning into photons and electrons matters
 - Run extreme cases for He NR-like and ER-like

Energy threshold

S2-only analysis

- Photon detection efficiency (S1) is about 10%
- Electron detection efficiency is (we hope) about 100%
 - High gain on S2 channel (80 phd/e-)
- Enables much lower threshold if you look at "S2-only"
- Give up ER/NR discrimination
- Subject to single electron noise
- Still very powerful

Energy threshold

3 electron threshold assumed for S2 (>250 photons)

What's next

- This is still fairly speculative
 - Henry's coefficients not comprehensively measured
 - Temperature dependence, diffusion, etc?
 - Signal yields depend on modeling and MeV scale data

What's next

- This is still fairly speculative
 - Henry's coefficients not comprehensively measured
 - Temperature dependence, diffusion, etc?
 - Signal yields depend on modeling and MeV scale data

CALIBRATION!

Henry's coefficient

- How much helium can we get in
- Test stand at Fermilab "Henry"
 - State of the art RGA system reading gas admixture via capillaries

Capillaries:

- -Bubbling tube 221mm
- -Liq. center cap. 204 mm
- -Liq. Side cap. 204 mm
- -Gas cap. 151 mm

Henry's coefficient

How much could we get in?

- Preliminary test on Henry got
 0.1% He in LXe by mass in first pass
- Can we get more in?
 - Temperature dependence?
- Basically inactive since student left two years ago

0.037 mol He/mol Xe x $M_{He}/M_{Xe} \sim 0.1\%$

Measuring He-doped LXe

- Small TPC constructed at Fermilab (XELDA) for a different purpose
 - Testing limits of ER discrimination for inner shell vacancies
- One 3" PMT facing four 1" PMT
- Now available for doping measurements

XELDA waveforms and data analysis

g1 = 0.226 +/- 0.0009 g2 = 20.25 +/- 0.141

g1: photons detected per photon emitted g2: photons detected per electron emitted

Determined by field strength and energy of calibration source

Krypton data, valid events, drift time cut, corrected S2

Neutron scattering measurement

Pulsed, mono-energetic neutrons

TPC

Scattering angle, O

- Pulsed, monoenergetic beam (at Notre Dame or elsewhere) to measure response of to nuclear recoils of known energy
- Tunable nuclear recoil energy by changing the neutron energy and the scattering angle
 - Neutrons of 100 keV 1.5 MeV
 - Recoils of ~1 keV up to 50 keV
 - Successful measurements in LAr (1406.4825, 1306.5675, SCENE)

Neutron scattering in SCENE

- Time of flight to measure the neutron timing
- Pulse shape discrimination(PSD) to select neutrons in the detectors
- Ntof time between beam pulse and neutron detector
- TPCtof time between beam pulse and LAr detector
- f90 PSD in LAr
- Npsd PSD in neutron detector

Neutron scattering with He in LXe

- In a doping measurement, for a given scattering angle, He recoils have more energy
 - Increased signal on top of that
- Pushes the peak out past the xenon background

Measures yield and S1/S2 response v. energy!

What do I worry about?

- Helium gas and PMTs are not a good mix
 - Diffuses through glass
 - Electron cascade ionizes
 He, leading to an after
 pulse
- In SCENE we got a bottle of UHP argon that was 10% He
 - ~1 day of exposure at various temperatures

Helium diffusion

- Diffusion exponentially suppressed by temperature (Arrhenius relationship)
- R11410 has a surprisingly thick window (3 mm)
- Calculation suggests 500 days at 1 bar/165 K before tube becomes inoperable
- That's pretty tight...
- Needs to be tested

Example for ET9226 PMT

Possible solution

- Silicon PMs are VUV sensitive and will not have a He after pulsing problem
- Could eventually replace the upper LZ PMT array with SiPMs
 - Lower backgrounds, might be valuable for double beta decay studies
 - Other dark matter experiments already looking at this (DarkSide)
- Plan to implement in XELDA already, just so we don't have to worry about the top array

He doping in LXe

- Physically possible
- Keep low background level achieved in LXe TPC
- Same signal readout with LXe sensitive light detectors (maybe with SiPM array)
- Increased signal yield from He recoils
 - Lower energy thresholds for WIMP-He scattering
- Properties measurable using existing techniques

- Using the NEST 2.0 alpha model, the LZ simulation, and expected LZ backgrounds
- Analysis and sensitivity using the LZ Profile Likelihood Ratio package
- For now, I assume ER-like partitioning of photons and electrons in He recoils
 - more conservative with regard to background rejection and S1/S2 sensitivity, slightly more optimistic for S2-only

- Location of LZ Helium lines depends critically on assumed signal yield
 - ~225 events/day/pb for 100 MeV WIMP with this yield
- S2-only line is for 20 live days limited by neutrino rate on xenon
- Also looked at more conservative 5e- S2-only threshold

He/Ne doping in LXe

- Physically possible
- Keep low background level achieved in LXe TPC
- Same signal readout with LXe sensitive light detectors
- Increased signal yield from He recoils
 - Lower energy thresholds for WIMP-He scattering
- Properties measurable using existing techniques
- Potential reach to well below 1 GeV dark matter
- Depends on properties that need to be measured

Electron (S2-only) backgrounds

- LUX/XENON have seen significant electron noise - e-trains, e-burps, etc
 - Photoionization on impurities, grids

(5)

~50us

<10%xS2

(1)&(3)

S2

- Delayed electron extraction
- Area of active work by LZ Electron Backgrounds WG

Electron (S2-only) backgrounds

Table

ID	background	timing (us)	cause	effect on analysis	Physics affected
1	photoionization of impurities in LXe above gate grid	<2.5	suspect mostly O ₂	S2 size determination	energy resolution
2	photoionization of gate grid	2.5	175 nm on SS	S2 size determination	energy resolution
3	photoionization of impurities in bulk LXe	3—806	suspect mostly O ₂	complicates multiple scatter tagging	-
4	photoionization of cathode grid	806	175 nm on SS	not a problem	not a problem
5	fast component of delayed emission	O(100)	emission of thermalized electrons from initial ionizing event	S2 size determination	energy resolution
6	slow component of delayed emission	O(1000+)	unknown	S2-only analysis	8B, low-mass DM
7	e-burps	seems random?	?	S2-only analysis for very small burps	8B, low-mass DM
8	faint grid emission	random	asperities on wires		

 At very low thresholds (where we want to go), we hit coherent scattering of neutrinos

$$\frac{R_{\nu, \text{coh}}}{R_{\chi}} \sim N^2 / A^2$$

- In doped LXe, N is still ~70, but A is now 4 or 20, instead of ~130
- Hit the neutrino background at x1000 higher WIMP cross section for helium

Signal yield

Recoil	Lindhard	SRIM
Xenon	0.02	0.02
Neon	0.20	0.09
Helium	0.68	0.69

Table 1: Estimated fraction of energy given to electronic stopping for nuclear recoils (not accounting for secondary cascades) from Xe, He, and Ne recoils in LXe, calculated using Lindhard theory [41] or the SRIM simulation package [42].

 At worst, we can expect a factor of 3.5 more signal for helium recoils in LXe

Even lower thresholds with the light target!