Trapping heavy and deformed nuclei... for a long, long time

Andrew Jayich^{1,2}

UCSB Department of Physics, Santa Barbara, CA California Institute for Quantum Emulation, Santa Barbara, CA

Acknowledgements

Mingyu Fan

Craig Holliman

Anna Wang (Stanford)

Sam Dutt

Collaborators

- Amar Vutha (Toronto)
- Dave Patterson (UCSB)
- Matt Dietrich (ANL)
- Eric Hudson (UCLA)
- Wes Campbell (UCLA)

Science

Compiled by Dave DeMille

Active EDM searches

ACME - ThO beam

ACME collaboration, *Science* **343**, 6168 (2014)

JILA - Trapped HfF+

Washington - Hg vapor

Graner et al, PRL 116, 161601 (2016)

Argonne - Ultracold radium

Parker et al., PRL 114, 6168 (2015)

Fishing

New directions


```
nuclear EDM (atoms):
<sup>199</sup>Hg: I=1/2
<sup>225</sup>Ra: I=1/2
```


14.9-day half-life

Octupole enhancement

Octupole enhancement

New directions


```
nuclear EDM (atoms):
<sup>199</sup>Hg: I=1/2
<sup>225</sup>Ra: I=1/2
```


14.9-day half-life

Sensitivity

Ion trapping

Potential in the Ion Trap

W. Paul, *RMP* **62**, 531 (1990)

Deformation enhancement

Enhancement: ~100-1000x

Easily polarizable

nuclear MQM

nuclear MQM - physics sensitivity

Collective enhancement: A^{2/3}~100x

not screened (compare to Schiff moment)

sensitive to pi₀ meson exchange

Sushkov et al, JETP 60, 873 (1984)

Flambaum, *Phys Lett. B* **320**, 211 (1994)

Flambaum *et al.*, *PRL* **113**, 103003 (2014)

Steps towards an MQM measurement

UCSB BiFROST

David Weld led proposal. Installing now.

Complementary ion trapping systems

1.) Time-of-flight mass spec. Linear motion feedthrough Precision leak valve

2.) High frequency trap Entanglement, metrology, etc. Quantum logic spectroscopy Direct comb spectroscopy

3.) Cryogenic molecular ion trap Reduce rotational phase space Extremely low vacuum

Molecular ion and radium ion factory

Precision leak valve

Linear motion feedthrough

The Trap

Time of flight mass spec.

Strontium ions in the lab

Controlled Sr isotope loading

Time of flight mass spectrometry

Time of flight mass spectrometry

Radium

Н																	Не
Li	Be									В	С	Ν	0	F	Ne		
Na	Mg											AI	Si	Р	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
Cs	Ba		Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Atomic parity nonconservation

Fortson, *PRL* **70**, 2383 (1993)

Atomic parity nonconservation

- Constrain Z boson masses arising from new physics
- Resolve discrepancies with single previous anapole moment
- Meson-nucleon couplings (poorly understood)
- Neutron skin
- Nuclear matter equation of state
- Axions
- Muon's anomalous magnetic moment

Fortson, *PRL* **70**, 2383 (1993) Haxton *et al.*, *ARNPS* **51**, 261 (2001) Arkani-Hamed *et al.*, *PRD* **79**, 015014 (2009) Davoudiasl *et al.*, *PRD* **89**, 095006 (2014) Roberts *et al.*, *PRD* **90**, 096005 (2014) Flambaum *et al.*, *PRA* **96**, 012516 (2017)

Atomic parity nonconservation

Davoudiasl et al., PRD 89, 095006 (2014)

Radium	half-life	nuclear spin	parent	parent's half-life
223	11.4 d	3/2	Actinium 227	21.8 y
224	3.6 d	0	Thorium 228	1.9 y
225	14.9 d	1/2	Thorium 229	7900 у
226	1600 y	0	_	-
228	5.8 y	0	Thorium 232	$10^{10} { m y}$

Q: Short half-lives? A: Ion trap

Actinium 22y half-life

Ra 225 at KVI (oven example)

Thorium 229 — Radium 225

Santra et al., PRA 90, 040501(R) (2014)

Santra, PhD thesis (2013)

The Radium Ion

The unknown

Radium radioactivity

$\frac{226}{Q} Ra \quad 1600 \text{ yr half life}}{\delta \gamma}$

10 micro Curie sample

equivalent: activity of ~50 people

or:

Co-trap radium with strontium

TOFMS

Laser stabilization (unique for ions)

Expected signal (dark ions)

With cold radium...

- nMQM constraint
- Radium-based molecular ions
- Parity nonconservation
- Optical clocks
- Quantum logic spectroscopy with Ra+
- Co-magnetometry with trapped Sr+
- Potential 225 Ra+ qubit
- Ra EDM measurement

2.) Direct frequency comb QL spectroscopy

Spectroscopy candidates:

- Molecular ions
- Fe+
- Co+
- Towards He+

3.) Cryogenic molecular ion trap

rotational state readout:

P. Schmidt et al., Nature 530, 457 (2016)

cryogenic ion trap:

Brandl et al., arXiv:1607.04980 (2016)

1 K ~ 20 GHz

Acknowledgements

Mingyu Fan

Craig Holliman

Anna Wang (Stanford)

Sam Dutt

Collaborators

- Amar Vutha (Toronto)
- Dave Patterson (UCSB)
- Matt Dietrich (ANL)
- Eric Hudson (UCLA)
- Wes Campbell (UCLA)