The MilliQan Experiment

David Stuart, UC Santa Barbara HEP at the Sensitivity Frontier, KITP, 5/23/18

Funding: DOE and UCSB

Search for milli-charged particles produced at LHC

Example: A new, dark sector U(1), could give dark sector particles a small *effective* SM charge through mixing

"Dark EM"

Mixing of dark photon and SM photon

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - rac{1}{4} B'^{\mu
u} B'_{\mu
u} - rac{\kappa}{2} B^{\mu
u} B'_{\mu
u}$$
 $\stackrel{1}{=} 0.500$ $-rac{1}{4} B'^{\mu
u} B'_{\mu
u} - rac{\kappa}{2} B'^{\mu
u} B_{\mu
u} + i ar{\psi} (\not{\partial} + i g_D \not{B}' + i M_{\mathrm{mCP}}) \psi$ $\stackrel{0.100}{=} 0.050$ 0.050 0.010

$$\longrightarrow Q_{eff} \propto \kappa \; g_D$$

Would be produced at LHC, eg via Drell-Yan invisible to detectors due to Q² suppressed ionization

Detector design

Three layers of long scintillator bars, arranged projectively to beam spot; Search for triple-coincidence of ≥ 1 photon signals, in-time and in-line.

Detector location

Situate near LHC collision point, with ~15 m of rock shielding

Detector location

"spelunking toward the dark sector"

Situate near LHC collision point, with ~15 m of rock shielding

Expected sensitivity

Original paper: Looking for milli-charged particles with a new experiment at the LHC

Andrew Haas,¹ Christopher S. Hill,² Eder Izaguirre,³ and Itay Yavin^{3,4}
Phys.Lett. B746 (2015) 117

Expected sensitivity: estimated with GEANT

A Letter of Intent to Install a Milli-charged Particle Detector at LHC P5 arXiv:1607.04669

Austin Ball,¹ Jim Brooke,² Claudio Campagnari,³ Albert De Roeck,¹ Brian Francis,⁴ Martin Gastal,¹ Frank Golf,³ Joel Goldstein,² Andy Haas,⁵ Christopher S. Hill,⁴ Eder Izaguirre,⁶ Benjamin Kaplan,⁵ Gabriel Magill,³,⁶ Bennett Marsh,³ David Miller,⁶ Theo Prins,¹ Harry Shakeshaft,¹ David Stuart,³ Max Swiatlowski,⁶ and Itay Yavin³,⁶

Expected sensitivity: estimated with GEANT

A Letter of Intent to Install a Milli-charged Particle Detector at LHC P5 arXiv:1607.04669

A key assumption is that background is dominated by dark rate.

To measure the backgrounds and optimize the design, we installed a

1% scale demonstrator for 2017-18 running

To measure the backgrounds and optimize the design, we installed a 1% scale demonstrator for 2017-18 running.

-Three pairs of bars + PMTs

To measure the backgrounds and optimize the design, we installed a 1% scale demonstrator for 2017-18 running.

- -Three pairs of bars + PMTs
- -Stacked 3 high

To measure the backgrounds and optimize the design, we installed a 1% scale demonstrator for 2017-18 running.

- -Three pairs of bars + PMTs
- -Stacked 3 high

To measure the backgrounds and optimize the design, we installed a 1% scale demonstrator for 2017-18 running.

- -Three pairs of bars + PMTs
- -Stacked 3 high
- -Scintillator panels between layers act as an active neutron shield

To measure the backgrounds and optimize the design, we installed a 1% scale demonstrator for 2017-18 running.

- -Three pairs of bars + PMTs
- -Stacked 3 high
- -Scintillator panels between layers act as an active neutron shield
- -Lead shielding between layers

To measure the backgrounds and optimize the design, we installed a 1% scale demonstrator for 2017-18 running.

- -Three pairs of bars + PMTs
- -Stacked 3 high
- -Scintillator panels between layers act as an active neutron shield
- -Lead shielding between layers
- -A tent of scintillator veto panels

To measure the backgrounds and optimize the design, we installed a 1% scale demonstrator for 2017-18 running.

- -Three pairs of bars + PMTs
- -Stacked 3 high
- -Scintillator panels between layers act as an active neutron shield
- -Lead shielding between layers
- -A tent of scintillator veto panels
- -Scintillator based hodoscopes for tracking

To measure the backgrounds and optimize the design, we installed a 1% scale demonstrator for 2017-18 running.

- -Three pairs of bars + PMTs
- -Stacked 3 high
- -Scintillator panels between layers act as an active neutron shield
- -Lead shielding between layers
- -A tent of scintillator veto panels
- -Scintillator based hodoscopes for tracking
- -A few more tracking stations for position dependent cosmic ray testing

To measure the backgrounds and optimize the design, we installed a 1% scale demonstrator for 2017-18 running.

- -Three pairs of bars + PMTs
- -Stacked 3 high
- -Scintillator panels between layers act as an active neutron shield
- -Lead shielding between layers
- -A tent of scintillator veto panels
- -Scintillator based hodoscopes for tracking
- -A few more tracking stations for position dependent cosmic ray testing
- B-field, temperature & humidity monitors

To measure the backgrounds and optimize the design, we installed a 1% scale demonstrator for 2017-18 running.

- -Three pairs of bars + PMTs
- -Stacked 3 high
- -Scintillator panels between layers act as an active neutron shield
- -Lead shielding between layers
- -A tent of scintillator veto panels
- -Scintillator based hodoscopes for tracking
- -A few more tracking stations for position dependent cosmic ray testing
- B-field, temperature & humidity monitors

Learning a lot about operations and backgrounds.

E.g.,: muons from collisions

Learning a lot about operations and backgrounds.

E.g.,: muons from collisions

Learning a lot about operations and backgrounds.

E.g.,: muons from collisions

Learning a lot about operations and backgrounds.

Learning a lot about operations and backgrounds.

E.g.,: muons from collisions

Number of through-going particles

Measured Rate of 180 per fb⁻¹ is consistent with expected rate from simulation of 220 per fb⁻¹

Summary and Outlook

Have design with new sensitivity over a large range of charge and mass

Engineering & mechanics at an advanced stage Final support structure already in place, module designs becoming mature

Have installed 1% scale demonstrator in tunnel taking data since Sept. 2017

Plan is to have experiment ready for physics before Run 3 (2020) Construction/Installation during LS2

On track to meet schedule if funded. M&S ~\$1M

Collaboration meeting photo

Additional slides

High gain, fast PMTs (\$\$)

Older, slower PMTs (effectively free!)

Hamamatsu R878

David Stuart, UC Santa Barbara

David Stuart, UC Santa Barbara

Extracting cosmic light yield

Extracting cosmic light yield

- Can't measure cosmic and SPE at single HV
- Scale cosmic yields by NPE
- 3-parameter fit:
 slope, intercept, N_{PE}

Cosmic light yields

O(5000) photons for vertical muon

Cosmic light yields

High voltage [V]

O(5000) photons for vertical muon

Q=0.01: ~5 photons **Q=0.005**: ~1 photon

High gain R7725s in B-field

High voltage [V]

Much more dramatic effect in R7725s

High voltage [V]

chi2/ndf=74.6/67 suonw 140 120 of 100 Number **After** 80 propagation 60 40 20 100 700

LHC fill integrated luminosity [pb⁻¹]

Simulate propagation of muons from CMS

Measured rate: 0.18 / pb⁻¹

• Expected rate: 0.22 / pb⁻¹

CMS: Fill 6323 Instantaneous Luminosity CMS Online Lumi

Average rate over many fills

