Simulation of NS-NS binaries

M. Shibata (Univ. of Tokyo)

Contents

0. Introduction

- 1. Current status of numerical implementation
 - 2. Latest numerical results:
 - 3. Summary

0. Introduction: Why we perform simulation for merger of 2NSs

(A) To clarify gravitational waveforms

f > 1 kHz at merger: too high for LIGO I to be detected. But may be a good source for future Interferometers or resonant – mass detectors (B) To compute fraction of disk mass in the formation of black hole
 Is it large enough to power GRBs (short-duration)?

(C) Which is the final product ? Black hole or Neutron star?

 $1.4M_{\odot} + 1.4M_{\odot} = 2.8M_{\odot} > 2M_{\odot}, NS + NS = BH?$

Maximum mass	Soft EOS	Stiff EOS
Spherical	$\sim 1.5 \mathrm{M}_{\odot}$	$\sim 2.0 \mathrm{M}_{\odot}$
Rigid Rotation +20%	$\sim \! 1.8 \mathrm{M}_{\odot}$	$\sim 2.4 \mathrm{M}_{\odot}$
Differential Rotation +>50%	$>2.3 \mathrm{M}_{\odot}$	$>3.0 \mathrm{M}_{\odot}$

Active groups in GR simulations

- M. Miller, Suen... (WashU)
- Illinois (Shapiro, Baumgarte, Duez et al.)
- Euro Network (Potsdam, Valencia ...??)
- (Oohara-Nakamura)
- Shibata (with Uryu, Taniguchi)

Use similar formulations & implementations

1. Necessary implementations for GR simulations

- Einstein evolution equations solver
- Gauge conditions (coordinate conditions)
- GR Hydrodynamic equations solver
- Realistic initial conditions in GR
- Gravitational wave extraction techniques (Radiation reaction)
- Powerful supercomputer
- Special techniques for handling BHs.

Summary of current implementations I

 Einstein's evolution equation : BSSN (Nakamura-Shibata) formalism

17 components

Rewrite equations using $\begin{cases} constraint equations \\ det(\tilde{\gamma}_{ij}) = 1 \end{cases}$

Stable numerical simulation (So far no problem in the absence of black holes)

Summary of current implementations II

• Spatial gauge condition :

Previous belief: Minimal distortion type gauge

MD gauge :
$$\Delta \beta^k + \frac{1}{3} D^k D_j \beta^j = S^k$$

Time consuming

New: Dynamical gauge (Alcubierre et al, Lindblom & Scheel)

Dynamical gauge (I use): $\dot{\beta}^{k} = \tilde{\gamma}^{kl} (F_{l} + \Delta t \dot{F}_{l}), \quad F_{l} \equiv \delta^{ij} \tilde{\gamma}_{il,j}$ $\dot{F}_{l} = \Delta \beta_{l} + \frac{1}{3} D_{l} D_{j} \beta^{j} - S'_{l}$

Works very well. Much smaller CPU TIME!

• Slicing condition : Maximal slicing or Dynamical slicing which is also likely to work

Evolution of compact rotating stars in a dynamical gauge

Summary of current implementations III

- Hydro code: Current trend
 High-resolution shock-capturing scheme
 (Approximate Riemann solver with PPM
 interpolation)
 Developed by Valencia & Munchen groups
 Now used by many groups (including myself)
- ⇒ Shocks & oscillations are computed accurately
 ⇒ Current best choice in

 *stellar collapse
 *detailed study of NS-NS merger

Standard tests for hydro code in special relativity

Summary of current implementations IV Initial condition for BNS (in quasiequilibrium) So far : Conformal flatness approximation $ds^{2} = -(\alpha^{2} - \beta^{k}\beta_{k})dt^{2} + 2\beta_{k}dx^{k}dt + \psi^{4}\delta_{ii}dx^{i}dx^{j}$ $\begin{cases} \Delta(\alpha\psi) = \dots \\ \Delta\psi = \dots \\ \Delta\beta^{k} + \frac{1}{3}\nabla^{k}\nabla_{j}\beta^{j} = \dots \end{cases}$ 5 elliptic PDEs $K = 0, \quad \tilde{A}_{ij} \equiv \psi^{-4} \left(K_{ij} - \frac{1}{3} \gamma_{ij} K \right) = \tilde{\gamma}_{jk} \tilde{\nabla}_{i} \beta^{k} + \tilde{\gamma}_{ik} \tilde{\nabla}_{j} \beta^{k} - \frac{2}{3} \tilde{\gamma}_{ij} \tilde{\nabla}_{k} \beta^{k}$ $\tilde{\gamma}_{ii} \equiv \psi^{-4} \gamma_{ii} = \delta_{ii}$

Adequate for qualitative study of merger (probably), but not for quantitative study since

 $\gamma_{ij} - \delta_{ij} \sim v^4 \sim O(0.1)$; Not small \rightarrow Need better one

What is a good formulation?

1. Binary evolves as a result of gravitational radiation

- \Rightarrow dE/dt = Ω dJ/dt holds for gravitational waves
- \Rightarrow The first law $\delta E = \Omega \delta J$ should be satisfied
- 2. Binary is in approximately stationary state. Virial relation should be satisfied (at least approximately).
- \Rightarrow ADM mass = 'Komar-like' mass

$$\psi = 1 + \frac{M}{2r} + O(r^{-2})$$
$$\alpha = 1 - \frac{M_K}{r} + O(r^{-2})$$
$$\Rightarrow M = M_K$$

(By the way, conformal flatness approx. satisfies these conditions.)

A prescription: Asymptotically waveless

$$L_{\xi}\tilde{\gamma}_{ij} = 0 = L_{\xi}\tilde{A}_{ij} \quad \text{for} \quad r \ll r_{\text{light cylinder}} \quad \text{OR}$$

$$L_{t}\tilde{\gamma}_{ij} = 0 = L_{t}\tilde{A}_{ij} \quad \text{for} \quad r \gg r_{\text{light cylinder}} \quad \xi^{\mu} = \left(\frac{\partial}{\partial t}\right)^{\mu} + F(r)\Omega\left(\frac{\partial}{\partial \phi}\right)^{\mu}$$

$$\Delta(\alpha\psi) = \dots$$

$$\Delta\psi = \dots$$

$$\Delta\psi = \dots$$

$$\Delta\beta^{k} + \frac{1}{3}\nabla^{k}\nabla_{j}\beta^{j} = \dots$$

$$\Delta\tilde{\gamma}_{ij} = \dots \quad \text{for} \quad r \to \infty$$

$$F = \begin{cases} 1 \quad \text{for} \quad r < r_{\text{light cylinder}} \\ 0 \quad \text{for} \quad r \gg r_{\text{light cylinder}} \end{cases}$$

$$RHS = \text{compact}$$

$$[O(r^{\Lambda}-4)]$$

$$\text{for} \quad r \to \text{infinity}$$

First law & Virial are guaranteed to be satisfied approx. in this formalism (Shibata et al. 2003)

Summary of computational resources

Required grid number for extraction of accurate gravitational waveforms

$$\lambda_{GW} \leq \lambda_{ISCO} \approx 58 \left(\frac{GM}{c^2}\right) \left(\frac{rc^2}{7GM}\right)^{3/2}$$
Require $L \geq \lambda_{GW}$ & $\Delta x \leq 0.2 \left(\frac{GM}{c^2}\right)$

$$\downarrow L >> r$$

$$\Rightarrow \frac{L}{\Delta x} \geq 290 \left(\frac{rc^2}{7GM}\right)^{3/2}$$
 & $N \geq 580 \left(\frac{rc^2}{7GM}\right)^{3/2}$

Total mass M

Minimum grid required (in uniform grid): 600 * 600 * 300 (equatorial symmetry is assumed) \Rightarrow Memory ~ 200 GBytes (~200 variables)

An example of current supercomputer FACOM VPP5000 at NAOJ

- Vector-Parallel type ~ max: 48PEs
- Maximum memory ~ 0.7TBytes
- Our typical run 633*633*317 grid points = 240Gbyte memory (in my code) About 20000 timesteps ~ 100 CPU hours Minimum grid numbers can be taken Hopefully we would like to use more powerful one. (e.g. As Earth simulator) Or need to develop mesh refinement techniques

Summary of Current Status

- Einstein evolution equations solver OK
- Gauge conditions (coordinate conditions)OK
- GR Hydrodynamic equations solvers OK
- Realistic initial conditions in GR
- Gravitational wave extraction techniques
- Powerful supercomputer
- Special techniques for handling BHs. ~OK, but need Mesh-refinement

But to

n

hypercomputers

developed

~OK

be

To be developed

2. Numerical results : example My current implementation 1. GR : Nakamura-Shibata (modified gradually) Improve transport term = crucial for M & J conservation Solve: $\partial_t \sqrt{\gamma} - \partial_i (\sqrt{\gamma} \beta^i) = -\alpha K \sqrt{\gamma}$ & use the hydro scheme

Not: $\partial_t \sqrt{\gamma} - \beta^i \partial_i \sqrt{\gamma} = -\alpha K \sqrt{\gamma} + \partial_i \beta^i \sqrt{\gamma}$ (previously used)

 Gauge : ~ Maximal Slicing + dynamical gauge
 Hydro : High-resolution shock-capturing scheme (Roe-type method with PPM interpolation)
 Initial conditions : Still conformal flatness approx. (computation with new formulation in progress)
 Wave extraction : Extract gauge-invariant variable
 Typical grid size : 633 * 633 * 317

Setting

• Equation of state t = 0 : $P = K \rho^{\Gamma}$ t > 0 : $P = (\Gamma - 1)\rho\epsilon$ with $\Gamma = 2$

	Compactness	Total rest mass	Spin	$m_2^{}/m_1^{}$	Model	Model Fate	
	$(M / R)_{\infty}$	$M_{*Tot}/M_{*Max}(J=0)$	J / M^2			raic	
	0.14	1.62	0.951	1	M1414	NS	
	0.16	1.78	0.914	1	M1616	BH	
	0.13 vs 0.15	1.62	0.961	0.90	M1315	NS	
_<	0.15 vs 0.17	1.77	0.923	0.925	M1517	BH	
~	0.14 vs 0.18	1.76	0.933	0.855	M1418	BH	
	^C M _{*Max} : Maxim	um rest-mass of spherica	al`star in i	isolation			
	Unequa	I mass (new)	Hy	permassiv	е		
Note (M/R) = 0.14 & 0.16 mean R = 15km & 13km if M = 1.4 Solar mass							

Animations

• http://esa.c.u-tokyo.ac.jp/~shibata/anim.html

Change of maximum density in NS formation

M/R = 0.14 equal mass case : final snapshot Massive toroidal neutron star is formed (slightly elliptical)

Comparison between equal and unequal mass merger

M/R = 0.13 vs 0.15: Massive NS + disk

M/R = 0.14 vs 0.14: Massive NS

Mass ratio ~ 0.90

Equal mass

Black hole formation case: M/R=0.16 Equal mass

Disk mass for unequal mass merger

M1517: Mass ratio 0.925 M1418: Mass ratio 0.855

Products of mergers for $\Gamma=2$: Latest results

Equal – mass cases

- Low mass cases (r ~ 15 km for 1.4 solar mass) Hyper massive neutron stars of non-axisymmetric oscillation.
- High mass cases (r < 13 km for 1.4 solar mass)
 Direct formation of Black holes with very small disk mass

Unequal – mass cases (mass ratio ~ 90%)

· Likely to form disks of mass

∼ several percents of total mass
→ BH(NS) + Disk

Gravitational waves: NS formation

Fourier spectrum for NS formation

Radiation reaction : OK within ~ 1%

Solid curves : computed from data sets. Dotted curves: computed from fluxes of gravitational waves

3. Summary

- Simulations are feasible to get scientific results.
 (I think) numerical implementations for fundamental parts have been almost established (for the absence of BHs).
- · Still there are technical Issues :
 - · Grid numbers are still not large enough
 - \rightarrow We need Mesh-Refinement (AMR/FMR).
 - Computation crashed due to grid stretching around BH horizon → We need excision.
 (Dynamical gauges may benefit excising.)
 Incorporate more physical EOS (probably not very

difficult), neutrino cooling, etc.