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Overview of the problem

Numerical solution of the Einstein field equations in 3D
requires significant computational power

- asystem of coupled, non-linear partial differential equations
containing hundreds of individual terms

- relevant length scales span several orders of magnitude for
systems of interest to gravitational wave detection. For
example, equal mass binary black hole merger:

- 1) individual sources, ~ M

+ 2) orbit, ~10M

- 3) 'wave-zone', where resultant waveforms can accurately be
measured, ~100M

- temporal scales span a similar range of magnitudes, e.g.

- at late stages of inspiral, expect significant dynamical
changes on characteristic timescale ~M

- need to evolve several orbits at least, ~IOOM to 1000M

Why is AMR a possible solution?

For many of the systems of interest to
gravitational wave detection (i.e. systems
containing black holes and/or neutron stars), the
shorter length scales occupy smaller volumes of
the computational domain

We do not know enough about these systems to
want to bet that an a-priori choice of a “body
fitting" coordinate system will allow us to solve all
problem with sufficient resolution
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Berger & Oliger style AMR

+ covers the computational domain with a hierarchy
of uniform meshes, with smaller, higher resolution
meshes entirely contained within the larger,
coarse meshes

Berger & Oliger style AMR

The hierarchy is generated via local truncation error (TE)
estimates to provide sufficient but not excess resolution

A recursive evolution algorithm allows “optimal” use of
resources in time as well as space, within limits allowed by
the CFL condition
- the recursive rule is that 1 evolution step is taken on a coarse
level before p, steps are taken on the next finer level
+ P, is an integer, typically equal to the spatial refinement
ratio P in order to satisfy the CFL condition
- the solution obtain on the coarse grid is used to set interior
boundary conditions on the fine grid

- a side benefit of the recursive nature of the algorithm is
that TE estimates can be computed essentially for “free"
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Berger & Oliger style AMR

+ Example of possible speed-up versus a unigrid code in
an equal mass black hole merger simulation. Assume:

finest grid fully covers each black hole (smallest scale, of
width 2M )

a linear filling factor of 1/2

a refinement-ratio of 2:1

an outer boundary at LM (longest scale, of width 2L .M )
evolution to t =L M

CFL factor =1/2

finest level L, =log,(L,) is a positive integer, sufficiently
large such that |

2(1/2)n 9

Berger & Oliger style AMR

* Then, the speed-up factor of AMR/unigrid is

Taur! T, is the total run time for the AMR/unigrid
simulation

C,ur/C,1s the average CPU time per grid point
needed to solve the equations in the AMR/unigrid
code — the ratio will be O(1)
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A couple of Caveats

Interior grid-boundary "noise" can be problematic when trying
to extract a small signal, such as gravitational waves, from the
simulation
find a set of interpolation/injection/dissipation operators that
work for a given problem
choose variables adapted to the signal of interest, so that it is
not a “small” feature
filter out the noise in a post-processing operation

AMR is not a cure-all

- even with the most optimistic speed up from AMR, and estimated
increase in computer power, it is not reasonable to expect to be
able to simulate a binary inspiral for thousands (or even hundreds)
of orbits ... analytic approaches essential then

can only be efficient in problems with small filling factors

does not eliminate the need to choose good coordinates ... grid
stretching and other coordinate "singularities” will kill an AMR
code just as easily as a unigrid one.

Brief history of AMR in NR

Choptuik (1993) - critical phenomena
- a handful of critical studies since then have also used AMR

Briigmann - first 3+1 AMR simulation of Schwarzschild
spacetime (1996) and binary black hole merger (1999)

Papadopoulos et. al. (1998) - 3+1 simulations of linearized
gravitational wave-black hole interactions

Hern (1999) - 2+1 evolution of inhomogeneous cosmologies

Diener et. al. (2000) -computation of initial data for black hole
collisions

New et. al. (2000) - 3+1 simulations of weak gravitational waves
(recently extended to strong waves and black hole spacetimes)
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Coupled Elliptic-Hyperbolic Systems with AMR

An evolution technique for the Einstein equations that may be
worth pursuing is a fully constrained evolution scheme

- solve the 4 constraint equations in lieu of 4 evolution equations

- a priorieliminate all gauge degrees of freedom from the variables

With an appropriate choice of coordinates and/or decomposition
of metric variables, the constraint equations are elliptic in
nature; hence, must solve coupled elliptic-hyperbolic equations

Potential advantages
- eliminate "constraint violating modes”

- minimize the number of variables/equations and hence additional
constraints that need to be imposed

Possible disadvantages
- no guarantees that there will not be "evolution violating modes”

- more difficult (impractical ?) to impose inner boundary conditions
consistent with the full set of Einstein equations

11

Coupled Elliptic-Hyperbolic Systems with AMR

Standard B&O time-stepping procedure works for hyperbolic
equations because of finite propagation speeds and TE-
driven hierarchy generation

- Calculating the hierarchy based on TE estimates guarantees
that the solution on the parent level in the vicinity of child
boundaries is sufficiently accurate that interpolation is
reasonable for setting child boundaries

Finite propagation speed prevents the poorly known solution at
the interior of a coarse grid from polluting the parent-child
boundary region between injection steps.

Arguments for why B&O works for hyperbolic equations
suggests it will not work for elliptic equations in general.
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Coupled Elliptic-Hyperbolic Systems with AMR

Modify the B&O algorithm to incorporate elliptic equations
via “extrapolation and delayed solution":

- solution of coupled h)ger'bolic/ellip‘ric equations is split into two
phases within the B&O recursive evolution scheme:

- 1) hyperbolic equations are solved in the usual order, when
descending the hierarchy from coarse to fine levels. During
this phase, all elliptic variables are "evolved"” via
extrapolation from past time levels.

- 2) the elliptic equations are solved when ascending the
hierarchy from fine to coarse levels, after the injection
step. Furthermore, after injection at level L, the elliptic
equations are solved over the entire sub-hierarchy from
levels L to L; (finest level).

Coupled Elliptic-Hyperbolic Systems with AMR

Empirically, the following extrapolation scheme was found to
be stable

- for level L, linear extrapolation using the solution at the
two previous times when level L was in sync with level L-1
(one level coarser).

when a new (semi) global solution is obtained from level L
up to (coarser) level L-d, causing the local solution at
level L to change, one adjusts the past time variables
used for extrapolation at level L to preserve
extrapolation velocities, and add a “correction” to
account for global shifts in the solution
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Sample fully constrained adaptive evolution:

Scalar field critical collapse in axisymmetry
(with M. Choptuik, S. Liebling & E. Hirschmann)

t=0.00 Scalar field,
d “anti-symmetric"
initial data

Weak field

evolution

o)

L

5.38e-03

Scalar field critical collapse in axisymmetry

t=0.0000 Scalar field,

Near-critical
collapse

L
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in Zn(r+10'6, 8) coordinates

AMR grid hierarchy, last frame

24(+1), 2:1 refined
levels

(2:1 coarsened in
figure)
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AMR grid hierarchy, last frame
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AMR grid hierarchy, last frame
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AMR grid hierarchy, last frame
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Sample fully constrained adaptive evolution:
weak-field scalar field evolution in 3D (with M. Choptuik)

base grid=32° ; 4, 2:1 levels (effective finest res. =256° )
using compactified Cartesian coordinates

run-time: ~ several hours on a single 2.4 Ghz P4 (~ 25
“dynamical crossing times"),

maximum memory usage ~ 60MB
=0.00 t=0.00
e 1.00e-03 1.00e-04

Scalar field showing grid
hierarchy

-5.00e- 5.00e-04 1.00000e-00 10

z=0 slice of scalar field z=0 slice of lapse function
(reaches minimum ~ 0.92)
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AMR for characteristic codes
(with L. Lehner)

« Ina characteristic evolution, one or two of the
coordinates are null.

We want an evolution algorithm for such a code
that shares the desirable features of B&O AMR:

- agrid-hierarchy composed of unigrid building blocks
- dynamical regridding via local truncation error estimates
- efficient use of resources along all coordinate dimensions

AMR for characteristic codes

In certain restricted situations, the B&O scheme can be
applied to a characteristic evolution by effectively treating
one of the null coordinates as “space”, the other as "time"
(as in Garfinkle's algorithm)

Cannot work in general, as there will be situations where
effects are propagated “instantaneously" along the “space”
coordinate

- causality arguments justifying the use of interpolation to
set fine-grid boundary conditions fail

- will not be able to efficiently track fine-features
propagating along the “space”-null direction (doing so
correctly could cause an entire level to refine, i.e. get a
filling factor of 1)
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AMR for characteristic codes

Solution is to consider both null directions as
“time" in the B&O sense

causality then forces a particular recursive evolution
scheme through the hierarchy

additional spacelike dimensions are treated in the same
manner as B&O for Cauchy codes

Characteristic AMR
example

3levels P=2:1

gridpoint
symbols:

Next frame:

Level 1 unit-cell
Evolution

Frans Pretorius, Caltech (KITP Gravitation Conference 5/14/03)
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Characteristic AMR
example

Characteristic AMR
example

3levels P=2:1

gridpoint
symbols:

Next frame:

Level 2 unit-cell
Evolution

3levels P=2:1

gridpoint
symbols:

Next frame:

Level 2 unit-cell
Evolution
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Characteristic AMR
example 3levels P=2:1

gridpoint
symbols:

Next frame:

Level 2 unit-cell
Evolution

Characteristic AMR
example 3levels P=2:1

gridpoint
symbols:

Next frame:

Set “initial data" for
level 3 via linear
Interpolation from
level 2

32
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Characteristic AMR
example
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Characteristic AMR
example

3levels P=2:1

gridpoint
symbols:

/' Next frame:

Level 3 unit-cell
Evolution

3levels P=2:1

gridpoint
symbols:

Next frame:

Level 3 unit-cell
Evolution
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Characteristic AMR
example 3levels P=2:1

gridpoint
symbols:

Next frame:

Level 3 unit-cell
Evolution

Characteristic AMR
example 3levels P=2:1

gridpoint
symbols:

[ ] ,.\
. )
O] o V
. /° Next frame:
[ |

O] Level 3 unit-cell

\@/ Evolution
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Characteristic AMR
example 3levels P=2:1

gridpoint
symbols:

Next frame:

Level 2 unit-cell
Evolution, using

injected solution
from leve/ 3 as

initial data
37

Characteristic AMR
example 3levels P=2:1

gridpoint
symbols:

Assume level 3

is now un-refined,

so evolution is
complete.

Frans Pretorius, Caltech (KITP Gravitation Conference 5/14/03)
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Sample 1D evolution

* From 1D massive scalar field collapse code
- uses a single ingoing null coordinate v

- uses a compactified spatial coordinate x : x=0 is the
origin of spherical symmetry, and x=1is [I°

- black hole (if present) is treated via excision

Outgoing, massive scalar field pulse
in a black hole spacetime

Scalar field times r Depth of hierarchy along
along v=constant slices v=constant slices

v=0.01 v=0.01

-5.00e-03 5.00e-03

x=0

Frans Pretorius, Caltech (KITP Gravitation Conference 5/14/03)
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Ingoing, massless scalar field, "near”
critical collapse

Scalar field Depth of hierarchy along
along v=constant slices v=constant slices

v=0.00 v=0.00

Conclusions

AMR is and will continue to be an essential technique for
finite-difference based solutions of many problems of
interest in general relativity

AMR is a “solved problem" compared to some of the other
issues (stable evolution schemes, initial conditions,
coordinate systems, boundary conditions, etc.) that must be
dealt with if numerical relativity is to become a significant
tool for gravitational wave astronomy.

- certainly many “details” must be worked out to make AMR work
in GR, but no fundamental problems

Ratio of reward (speed-up) to implementation effort of AMR
is potentially quite large, and faster run-times cannot but
help in resolving other issues
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Hierarchy Construction

Arguably, the most sensible manner to construct a grid
hierarchy is via tfruncation error (TE) estimates

Traditionally, in Berger & Oliger AMR, TE estimates are
calculated periodically via the following procedure:

1. 2 copies of the relevant levels of the hierarchy are made: I, an
identical copy, and C, a 2:1 coarsened copy

. copy C is evolved 1 time step, copy I is evolved n (typically 2)
time steps until it is in sync with copy C

. the solution on C is subtracted from the solution on I, which by
the usual Richardson expansion gives a function proportional to
the solution error

Hierarchy Construction

* A shadow hierarchy (Choptuik) economizes the
process of TE estimation by evolving in synchrony
with the main hierarchy a 2:1 copy of it called the
shadow hierarchy

- cost in speed is small (~1/16 extra time needed in 3D)

- offers a net savings in memory by not having to replicate
the main hierarchy at regridding time

- evolution procedure for the shadow is identical to that of
the main hierarchy, except periodically the shadow grid
functions are updated to match those in the main
hierarchy

Frans Pretorius, Caltech (KITP Gravitation Conference 5/14/03)
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Hierarchy Construction

Can further economize TE calculation by noting that information
needed to compute the TE is automatically available prior to the
fine-to-coarse grid injection phase within the B&O algorithm
- i.e. the hierarchy "acts as it's own shadow" --- call this a self-shadow
hierarchy (SSH) technique

Can show that the TE computed with a SSH will differ from that
computed via a shadow hierarchy (where the shadow is updated as
frequently as possible) by an amount proportional to O(h”4)

The only overhead for a SSH is that at least two levels are needed
in the hierarchy for this to work

hence, require that the base level always be fully refined (or
equivalently, define the desired "base level” to be level 2)

essentially no speed or memory penalty in problems with deep
hierarchies

almost no additional computational infrastructure needed
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