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Introduction

Problem: Solve Einstein’s equations on a computer.
Motivation: Binary black hole problem, gravitational waves, critical
phenomena, other dynamical phenomena.
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Introduction

Einstein’s equations naturally split into a set of evolution equations and
a set of constraints:

∂tu = X(u), C(u) = 0.

Free evolution: Solve the constraints at t = 0 only. Because of the
Bianchi identities, the constraint variables C(u) satisfy a set of
evolution equation on their own:

∂tC = Y (C),

where Y (C) is homogeneous in C. Usually, this allows to show that the
constraints are satisfied at later times as well.
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Introduction

But in view of numerical applications the situation is a little bit more
complicated:

Usually one cannot assume that C = 0 initially. Initial data is
subject to small errors.
How do these errors propagate in time?
It is important to have a good understanding of the evolution
equations for the constraint variables!
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Introduction

Due to finite computer memory, one usually has to deal with
artificial boundaries.

t=0

time-like boundary

domain of dependence

t=T>0

The Bianchi identities only guarantee that the constraints are
satisfied in the domain of dependence of the initial “region”. In
order to satisfy the constraints beyond this domain, one has to be
careful about the boundary conditions!
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Introduction

Constraint-preserving boundary conditions (CPBC):

1998 Stewart: CPBC for the linearized field equations.
Class. Quantum Grav. 15, 2865 (1998).

1999 Friedrich, Nagy: Consistent boundary conditions for the nonlinear
vacuum equations. Their formulation uses Weyl tensor as part of
the fundamental variables. Comm. Math. Phys. 201, 619 (1999).

2001 Calabrese, Lehner, Tiglio: Derivation of CPBC for the spherically
symmetric case. Phys. Rev. D 65, 044024 (2002).

2002 Szilagyi, Winicour: CPBC for the nonlinear vacuum equations in
the harmonic gauge; homogeneous boundary conditions.
gr-qc/0205044.
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Introduction

2002 Calabrese, Pullin, Reula, Sarbach, Tiglio: Derivation of well posed
CPBC for the generalized Einstein-Christoffel system in the weak
field regime.
gr-qc/0209017, to appear in Comm. Math. Phys.

2003 Frittelli, Gomez: Projection of Einstein’s equations along the
normal to the boundary surface —-> CPBC?
gr-qc/0302032.

Alternative approach: Conformal field equations.

Einstein’s equations with artificial boundaries – p.8/27



Maximal dissipative b.c.

Initial-boundary value problem:
Evolution equations as a (quasi)linear first order system

∂tu = Aj(t, xi)∂ju+B(t, xi, u), (t, xi) ∈ [0, T ] × Ω

with initial data u(t = 0) = f and boundary data Mu(xi ∈ ∂Ω) = g.
VERY IMPORTANT notion in view of numerical applications:

Well posedness estimate: ‖u(t)‖ ≤ C(t)(‖f‖ + ‖g‖) for all
0 ≤ t ≤ T and all data f , g. This implies that at each time t > 0

the solution depends continuously on the initial and boundary
data. This is important because at the numerical level the data is
contaminated with small errors.
(One might want to control C(t) as a function of time as well.)
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Maximal dissipative b.c.

Remark on weakly hyperbolic systems: As an example, consider the
following system with periodic b.c.

∂tu1 = ∂xu1 + ∂xu2

∂tu2 = ∂xu2 + au1

Fourier space: ∂tu = A(ω)u, where A =





iω iω

a iω



 has

eigenvalues λ± = iω ±
√
aiω. Take eigenfunction of A with

eigenvalue λ+ as initial data: ‖u(t)‖ = exp (Real(λ+)t) ‖u(0)‖, but
Real(λ+) → ∞ as ω → ∞ for each fixed t. (If a = 0 one has only a
linear growth in ω).

ADM equations are weakly hyperbolic. Cannot have a stable evolution
(Calabrese et al. Phys. Rev. D 66, 041501 (2002)).
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Maximal dissipative b.c.

For (quasi)linear first order systems

∂tu = Aj(u)∂ju+B(u),

(local) well posedness estimates can be obtained if some (simple)
algebraic conditions on the principal symbol (A(n) = Ajnj) are verified:

A(n) diagonalizable for all n, eigenvalues real, and eigenvectors
depend smoothly on n, x and u: strongly hyperbolic. One can
obtain estimates for periodic b.c. (or no b.c.)

Special case: A(n) symmetric for all n: symmetric hyperbolic.
If suitable boundary conditions are specified, symmetric
hyperbolic equations also imply well-posedness for the
initial-boundary value problem.
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Maximal dissipative b.c.

Example: ∂tu = Aj∂ju, A1, A2, A3 symmetric constant matrices.
Energy estimate: E(t) =

∫

Ω
u(t, x)Tu(t, x)d3x, integration by parts

Ė(t) = 2

∫

Ω

uTAj∂ju =

∫

Ω

∂j(u
TAju) =

∫

∂Ω

uTAjnju.

Suppose Ajnj has only the eigenvalues 0,±1. Decompose
u = u+ + u− + u0: uTAjnju = u2

+ − u2
−.

Maximal dissipative boundary conditions: u+ = Lu−.
If L is small enough, the boundary term is nonnegative, and it follows
that

E(t) ≤ E(0).

In particular one has uniqueness.
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Maximal dissipative b.c.

Generalization to

u+ = Lu− + b,

where b is a prescribed function at the boundary.
If the boundaries are smooth (and other technical assumptions are
satisfied), the existence of a smooth solution to the initial-boundary
value problem for quasilinear symmetric hyperbolic systems follows
(Rauch, Secchi,...).
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Maximal dissipative b.c.

To summarize:

Symmetric hyperbolic first order evolution systems
and

maximal dissipative boundary conditions
(+ technical assumptions)

yields well posed initial-boundary value formulations.

BE CAREFUL IF SYSTEM IS NOT SYMMETRIC HYPERBOLIC
(see end of the talk)
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CPBC: A toy model example

In order to illustrate how to construct constraint-preserving boundary
conditions, we consider the flat wave equation, written in first order form,
but with a nontrivial shift:

(∂t + b∂x)Π = ∂idi ,

(∂t + b∂x)di = ∂iΠ ,

where 0 < b < 1. Solve this for t > 0,
x > 0.

0
x

t

x=x+bt=0

C_ij = const
t

This system is only equivalent to the wave equation if the constraints
0 = Cij = ∂idj − ∂jdi are satisfied. The Cij propagate according to
(∂t + b∂x)Cij = 0, so Cij = const along the lines x− bt = const.
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CPBC: A toy model example

Therefore, we have to set Cij = 0 not only on the initial slice, but also
on the boundary surface x = 0. So we need to impose
0 = 2Cxy = ∂xdy − ∂ydx .

But one does not control normal derivatives (∂x) at the boundary.
Eliminate those terms by using the evolution equations:
0 = ∂xdy − ∂ydx = −b−1∂tdy + b−1∂yΠ − ∂ydx .

Therefore, we have the following equations which are intrinsic to the
boundary x = 0:

∂tdy = ∂y(Π − b dx),

∂tdz = ∂z(Π − b dx).

These conditions automatically imply Cyz = 0.
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CPBC: A toy model example

∂tdy = ∂y(Π − b dx),

∂tdz = ∂z(Π − b dx).

However, these conditions do not look like maximal dissipative
boundary conditions. In terms of the characteristic variables,
Π − b dx = (1 + b)uin + (1 − b)uout, where dy,dz,uin are ingoing
variables.

But we can set Π − b dx = ψ, where ψ is a prescribed function at the
boundary and then integrate the above equations to obtain dy, dz.

But typically, we would like to set uin = 0 (“radiative” boundary
condition). In this case, one obtains a differential equation for dy, dz,
uout that is intrinsic to the boundary. This requires to go beyond
maximal dissipative boundary conditions!
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Results for Einstein’s equations

Einstein-Christoffel system: Evolution equations are system of six
coupled wave equations written in first order form:

∂tKij = ∂kfkij ,

∂tfkij = ∂kKij .

plus a bunch of constraints, 0 = C(Kij , fkij ; η), where η is a parameter.
Constraint variables C satisfy a first order evolution system on their
own. This system has been shown to be symmetric hyperbolic if
0 < η < 2 and strongly hyperbolic otherwise.

Einstein’s equations with artificial boundaries – p.18/27



Results for Einstein’s equations

In order to derive CPBC we proceed similarly to the previous case:

Analyze the characteristic fields of the evolution system for the
constraints. Impose homogeneous maximal dissipative b.c. for
this system. If 0 < η < 2 the general theory guarantees that the
constraints are zero if so initially. Furthermore, for each fixed t,
small initial errors give rise to small errors at time t.

Cin = LCout

Translate these conditions into conditions for the main variables.
Eliminate normal derivatives by using the main evolution eqns.

For a suitable coupling between the in- and outgoing fields the
resulting system gives rise to a closed symmetric hyperbolic
evolution system at the boundary. Once this system is solved, one
obtains data for maximal dissipative boundary conditions for the
main system.
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Results for Einstein’s equations

One ends up with three source functions that are free: They can be
used to specify Dirichlet or Neumann-like conditions on the normal-
normal and transverse-traceless components of the metric components
(the former corresponding to a gauge freedom, the latter to a physical
choice).

Once these free source func-
tions are specified, one solves
the closed evolution system at
the boundary and obtains data
for the main evolution system. t=0

t=T>0

x=const

specify freely K_xx,K_yy,K_yz

initial data

solve an evolution system

Compatibility conditions at edges!
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Results for Einstein’s equations

So the boundary conditions we have found are CPBC and yield a
well-posed initial-boundary value formulation. However, it is far from
clear that the b.c. are suitable for physical purposes since likely, they
are going to introduce reflections at the boundaries.

More general constraint-preserving boundary conditions where one
can control part of the ingoing characteristic fields can be constructed.
But do they yield a well posed system?
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Beyond maximal dissipative b.c.

Detecting ill-posed modes using Laplace-Fourier techniques: Consider
linear symmetric hyperbolic system with constant coefficients

∂tu = Ax∂xu+Ay∂yu+Az∂zu, t > 0, x > 0,

with boundary conditions of the form
M(∂t, ∂y, ∂z)u = g(t, y, z).

Look for solutions of the form u(t, x, y, z) = est+i(wyy+wzz)f(x), where
Re(s) > 0, wy, wz real.
Test: If g = 0 there should be no such solutions. Otherwise the system
is ill posed: Because if there is such a solution for some s, Re(s) > 0,
then there is also a solution for αs, α > 0 and for each fixed t

|uα(t, x, y, z)|/|uα(0, x, y, z)| = eαRe(s)t → ∞.
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Beyond maximal dissipative b.c.

Introducing the ansatz u(t, x, y, z) = est+i(wyy+wzz)f(x) into the
evolution and boundary equations gives

sf = A∂xf + i(Aywy +Azwz)f, L(s, iwy, iwz)f = 0.

Solution has the form f(x) = PeM
−

xσ−, Re(M−) < 0 with LPσ− = 0.
Therefore, one has to verify the determinant condition

det(L(s, iwy, iwz)P ) 6= 0, Re(s) > 0.
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Beyond maximal dissipative b.c.

Applications:

Wave equation in first order form with shift: Sommerfeld-like
conditions: passes test.

More general CPBC for the linearized Einstein-Christoffel system:
Sommerfeld-like conditions: passes test.

Calabrese, Sarbach, gr-qc/0303040, to appear in J. Math. Phys
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Beyond maximal dissipative b.c.

Applications:

More general CPBC for the linearized Einstein-Christoffel system:
Consider values for η outside the interval (0, 2), where the
evolution system for the constraint variables is not known to be
symmetric hyperbolic: test fails for η < 0 or η > 8/3!

In the last case, one can show that the ill posed modes
(u ∼ est+iwyy+iwzz) violate the constraints in the sense that C(u) 6= 0.
This means that the initial-boundary value problem for the constraint
variables is not well posed! This is surprising because the system is
strongly hyperbolic and we specify boundary conditions that set the
ingoing modes to zero!
In this sense boundary conditions are not constraint-preserving!
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Beyond maximal dissipative b.c.

Remark: Recent proposal by Frittelli, Gomez:
Initial data on a hypersurface with normal vector nµ is subject to the
constraints Gµνn

µ = 0. At time-like boundaries, it is natural to analyze
the equations Gµνv

µ = 0, where vµ is the unit outward normal to the
boundary.
When introducing first spatial derivatives of the metric as extra
variables (as is the case in the Einstein-Christoffel system) these
equations are intrinsic to the boundary in the sense that they involve
only derivatives that are tangential to the boundary.
Do these equations provide CPBC?
Do they pass the test?

NOT IF η < 0 or η > 8/3.
So it is really important to analyze the evolution of the constraint
variables!
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Conclusions

IBVP in GR far from being solved (given a generic hyperbolic
formulation of Einstein’s equations). Important for NR since in 3d
simulations one cannot push the boundary far away.

Partial results in the linearized case. Generalization to nonlinear
case might require more powerful techniques (Fourier- Laplace).

Imposing the projection of Einstein’s equations along the normal
to the boundary surface is not enough.

Surprising mathematical result: Strongly hyperbolic system with
zero ingoing characteristic fields at the boundary can lead to an
unstable system.
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