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Overview

High-resolution methods for first-order hyperbolic systems
Shock waves in nonlinear problems

Heterogeneous media with discontinuous properties
Godunov-type methods based on Riemann solvers

Second-order correction terms with limiters to minimize
dissipation and dispersion



Software

CLAWPACK (Conservation LAWSs Package):

http://www.amath.washington.edu/ claw

Includes a preliminary version of CLAWMAN for manifolds.
Developed by

e Derek Bale (relativistic flow)

* James Rossmanith (geophysical flow on the sphere)

Also includes AMRCLAW for adaptive mesh refinement on
rectangular patches (with Marsha Berger).



AMR on a manifold
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Outline

* Brief review of Godunov-type methods

* Wave propagation approach

» f-wave approach for discontinous fluxes and source terms
e curvilinear grids in flat space

e manifolds:

 parallel transport data to cell edges
e EXxpress in local orthonormal frame
e Solve locally-flat Riemann problem

e Metric terms and geometric source term naturally
Incorporated

References:

http://www.amath.washington.edu/ rjl/publications and /students

J. Pons, Font, Ibanez, Marti, Miralles, General relativistic hydrodynamics with special
relativistic Riemann solvers, Astron. Astrophys. 339 (1998), 638-642



Finite-difference Methods

* Pointwise values Q7 ~ q(x;,ty)
e Approximate derivatives by finite differences
e Assumes smoothness

Finite-volume Methods

_ 1 Lit1/2
* Approximate cell averages: Q;" ~ A—/ q(x,ty,) dx
£ xr

i—1/2

* Integral form of conservation law,

O Li+1/2
a/ / q(gj)]f) dr = f(Q(wz_l/Q,t)) — f(Q(x’L—I—l/Zat))
Li—-1/2

leads to conservation law ¢; + f, = 0 but also directly to
numerical method.



Godunov’s method
Q7 defines a piecewise constant function
q"(x,tn) = Q5 for Ti1/2 < T < Tjpq/9

Discontinuities at cell interfaces — Riemann problems.
n—l—l
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Riemann solution for the Euler equations

rarefaction wave contact shock

The Roe solver uses the solution to a linear system

qt + 121@'—1/2%: = 0.

All waves are simply discontinuities.

Typically a fine approximation if jJumps are approximately
correct.



Wave-propagation viewpoint

For linear system ¢; + Aq,; = 0, the Riemann solution consists of
waves WP propagating at constant speed NP,
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High-resolution method for systems

At

At ~
QI = Q- [A AQi—1/2+ A AQ;11 /2| -

AI(FﬁLl/Z_ i—1/2)

Mw
ATAQ 12 = Z(Sf—l/z)_wf—l/w
p=1
M.,
ATAQi—1/2 = Z(Sf—1/2)+wf—1/2>
p=1
Correction flux:
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CLAWPACK

http://www.amath.washington.edu/ claw/

e Fortran codes with Matlab graphics routines.

e Many examples and applications to run or modify:.
e 1d, 2d, and 3d.

User supplies:

* Riemann solver, splitting data into waves and fluctuations
(Need not be in conservation form)

e Boundary condition routine to extend data to ghost cells
Standard bc1. T routine includes many standard BC’s

 Initial conditions — ginit.f



Some applications

Gas dynamics, Euler equations

Waves in heterogeneous / random media

Acoustics, ultrasound, seismology

Elasticity, plasticity, soil liquifaction

Flow in porous media, groundwater contamination, oil recovery
Geophysical flow on the sphere

Shallow water equations, bottom topography, tsunami propagation
Chemotaxis and pattern formation

Traffic flow
Crystal growth

Multi-fluid, multi-phase flows, bubbly flow

Streamfunction—vorticity form of incompressible flow

Projection methods for incompressible flow

Combustion, detonation waves

Astrophysics: binary stars, planetary nebulae, jets
Magnetohydrodynamics, shallow water MHD

Relativistic flow, black hole accretion

Numerical relativity — Einstein equations, gravity waves, cosmology



Spatially-varying flux functions

In one dimension:
¢+ flg, )z =0

Examples:
* Nonlinear elasticity in heterogeneous materials

* Traffic flow on roads with varying conditions
* Flow through heterogeneous porous media
e Solving conservation laws on curved manifolds



Riemann problem for spatially-varying flux
qt _I_f(Q7x):E = (

Cell-centered discretization: Flux f;(q) defined in :th cell.

qt + fi—1(q)z =0 i qt + fi(@)= =0

Flux-based wave decomposition:

fZ(QZ) QZ 1 Zﬁf 1/2 i— 1/2_2 i—1/2



Wave-propagation algorithm using f-waves

At
QItt = Qf - [A AQi—1/2 + ATAQ 41 /9]

At~ .
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Standard version: Q; — Qi—1 = >,y Wy |
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Wave-propagation algorithm using f-waves

At _
Q?H = @ — A—x[«‘ﬁﬁ@i—yz + ATAQ 41 /2]

At~ .
— A—x[FiJrl/Q — Fi_1/2]

Using f-waves: f;(Q;i) — fi—1(Qi-1) = >, Zf_l/z

A_AQi—1/2 — Zf_l/ga
psf_1/2<0
A+AQ7L—1/2 — Zf_l/ga
p:s? 1/2>O
. 1 — At ~
Fi12 = 5 ngn(sf_l/g) <1 — A_CE‘Sf_l/2|> Zf—1/2



Source terms
gt + f(@)z = ¥(q)

Quasi-steady problems with near-cancellation:
f(q). and v both large but ¢; = 0.

Examples:

e Atmosphere or stellar dynamics with gravity balanced by
hydrostatic pressure

e Shallow water equations in a lake over bottom topography



Source terms
gt + f(@)z = ¥(q)

Quasi-steady problems with near-cancellation:
f(q). and v both large but ¢; = 0.

Examples:

e Atmosphere or stellar dynamics with gravity balanced by
hydrostatic pressure

e Shallow water equations in a lake over bottom topography

Fractional step method: Alternate between
1. gt + f(x)x =0,

2. g = Y(q)

Large motions induced in each step should cancel out, but won’t
numerically.



Riemann problem with a delta-function source term

gt + f(@)z = AxV;_y /9 6(x — 21 9)

W?—1/2

W7;1—1/2

¢t + fic1(@Q)e =0 i G+ Fi(@)a =0

Flux is no longer continuous:
f( g_l/z) — f(Q,lL_l/Q) — A37\1]@'—1/2-

fil@i) = fim1(Qim) = AaWi_yyp = Y B0 ol =D ZD
n—1 n=—1



Multidimensional Hyperbolic Problems

Integral form of conservation law:

%//Qq(m,y,t)dxdy:—A@ﬁ'f(Q)dS-

If ¢ Is smooth then the divergence theorem gives

%//Qq(a:,y,t)dxdy:—//Qﬁ'f?(Q)dl“dya
//Q 4+ V- f(o)] dedy =o0.

True for all ) —

or

@+ f(q)z +9(q)y =0,



Finite volume method In 2D

Yj+1/2

Qz’j n 1 Yj+1/2 Lit1/2
Yj—1/2 ij ~ AA q(x,y,t,) dx
ray Yj—1/2 Li—1/2

Li—1/2 Li4+1/2

d Yj+1/2 yg+1/2
—// q(z,y,1) dwdy:/ fla(zit1/2,y,t) dy — / fla(zi—1/2,y,t) dy
dt Cij Yy Y

j—1/2 j—1/2

Tit1/2 i+1/2
‘|‘/ 9(q(z,yj41/2:1) dfl?—/ 9(q(x,y;_1/2,t) dx.

Ti—1/2 Ti—1/2

Suggests the unsplit method

n n At n At n n
Qi = )

ij T Wij T A_:z:[ i+1/2,5 Fin—l/Z,j] — A_y[ ij+1/2 — Yig—1/20



Unsplit Godunov in 2D

At each cell edge, the flux Is determined by solving a Riemann
problem in the normal direction with data from the neighboring
cells.

gt + f(q)z =0

i?}|-1/2] f( ( R ?—i—l,j))

¢+ 9(q)y =0

G?; 1/2_9( |( i j— 17@3))



Finite volume method on a curvilinear grid
(Flat space)

Two possible approaches:

1. Transform equations to computational space.
Discretize equations that include metric terms, source terms.

2. Update cell averages in physical space.
Solve 1d Riemann problems for physical equations in direction
normal to cell edges to compute flux.



Example: Linear acoustics

Homogeneous medium with
density p =1, bulk modulus K =1, sound speed c =1,

p = pressure, wu = velocity, T = pI = stress tensor
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One approach:
Discretize these equations directly in computational coordinates

Cl?k.
0 1 0 I
EP—F\/E&E,C(\/EU)—O
0 1 0 I I
o.m TEM ) — _Tm pkn
o T ok (\/ﬁ ) nk
Note:

o Spatially varying flux functions
e Source term — conservative?



Better approach:
Update cell average of ¢ over physical finite volume cell

e Store Cartesian velocity components u, v in each cell.

* At each cell edge, use data on each side to
e compute normal velocities at edge,
e solve 1d Riemann problem in normal direction,
* scale resulting waves by length of side,
* use to update cell average



Grid mapping:

Ax?

Azl

| 0z/0xt Ox/0x? _ 7T | hir hao _
/= dy/dxt  0Oy/ox* |’ H=J"J= ho1  hag |’ h = det(H).

Lengths of sides in physical space ~ h11Ax', hoaAz?,

Area of cell ~ VhAzIAx2,

Flux differencing around boundary approximates covariant
divergence of flux.



Shallow water flow into a cylinder
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Acoustics on a manifold

210+ ! 8k (\/ﬁuk) =0

ot Vh Ox
9 19 X X
Y oom Tkm\ _ _pm pkn
ot " —i_\/ﬁ&zsk’(\/ﬁ ) nk

Now we must represent velocities in “computational coordinates”



At each cell edge:

» Parallel transport cell-centered velocities to edge,

e Change coordinates to a local orthonormal frame at cell edge
to obtain normal and tangential velocities,

e Solve 1d Riemann problem normal to cell edge
(assuming locally flat)

e Scale resulting waves by length of side,
transform back to cell-centered coordinates,

e Update cell averages.



CLAWMAN software

Currently only 2d.

Requires metric tensor H

e 2 x 2 matrix as function of 2! and 22,
» Used to compute scaling factors for edge lengths, cell areas,

* Used for orthonormalization at cell edges.

Christoffel symbols are needed for parallel transport

e Computed by finite differencing H.



Parallel Transport

%) - m o O ul Flk Flk ul B
@U +Fnku —O or % U2 —+ F%k ng U2 —O

Approximate using Taylor series:

1 1
u'" (wk + iAxk> ~ u™(zF) F §Axk1’%u”(xk)




Parallel Transport for acoustics

For acoustics with ¢ = (p, u!, u?)?, solve Riemann problem with

0 0 0 7
14 1 1
Y1725 = (1 -1 0 Ty ?%k > di—1,5
2k -
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f-wave formulation

Split jump in fluxes AF' into waves.

AF!' = <I+

1 1
— 'zlj_fz

where

1 _

0 0 0 |
0 Fik Fék ,}j— I —
0 Flk: F2k:_ij

1,1
1, — AT Y19

- 0 -
FllTll i F12T21

I FllTll i F12T21 .

v

This is n = 1 portion of the source term

W = L7 T

_|_

0 0 0
0 Ty, Ty
1—1,9

0 TF T3 |

FllTll i F12T21

] FllTll 4 F12T21 |



Acoustics on a manifold

ot Vh Oxk
Y oom Tkm ) _ _1m pkn
at Vh Oxk (\/E ) nk

With finite volume formulation,

e Source term is automatically incorporated by parallel
transport of fluxes,

e Covariant divergence is handled by use of edge lengths and
cell volume,

» Parallel transport and orthonormalization allows use of
standard flat-space Riemann solver at interface.



Cubed sphere grid
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X — position y — position

Six logically rectangular grids are
patched together.

Data is transferred between patches
using ghost cells




Shallow water on the sphere
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Shallow water on the sphere
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Outline

* Brief review of Godunov-type methods

* Wave propagation approach

» f-wave approach for discontinous fluxes and source terms
e curvilinear grids in flat space

e manifolds:

 parallel transport data to cell edges
e EXxpress in local orthonormal frame
e Solve locally-flat Riemann problem

e Metric terms and geometric source term naturally
Incorporated
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