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AEI:

• SH, Christiane Lechner

• Carsten Schnemann, Anil Zenginoglu

Ian Hinder from U. Southampton collaborates on automatized code generation
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questions

answered:

• why compactification? why hyperboloidal?

• why spherical boundaries?

• why is our code called Scriwalker?

• are 92 constraints too many? can we evolve Minkowski space?

raised:

• spherical boundaries – but how? how should we solve the constraints?

• can we get rid of first order symmetric hyperbolic?
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isolated systems as models of sources of gravitational radiation

Key physics concepts to describe “astrophysical” processes in GR: essential
independence of the large-scale structure of the universe, ’radiation leaves system’.

→ physical idealization: isolated system – geometry “flattens at large distances”

GR: mass, (angular) momentum, emitted gravitational radiation can not be defined
unambigously in local/quasilocal way – only make sense in asymptotic limits

→ mathematical formalization within GR: asymptotically flat spacetimes –
can be used to model sources of gravitational radiation

There are three very different directions toward infinity: timelike / spacelike / null!

Observers situated at ”astronomical” distances (e.g. gravitational wave detectors)
– ”looking inside along light rays” – are modeled by geometric objects at null
infinity (≈ “in phase” with radiation source!).
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Computers are not particularly well suited to treat infinities!

Inf and NaN don’t make this better!

Two complementary dreams in numerical relativity:

• we might invent an efficient numerical scheme for systems with boundaries for
which we can choose the boundaries sufficiently far outside to get correct results.

Problem: need to control 2 convergence parameters, moving the cutoff surface
toward null infinity is very difficult, moving it toward spatial infinity makes
limited sense.

• Using conformal compactification techniques, we solve the asymptotics problem
on the level of the field equations, and we might succeed in treating the resulting
system of equations with higher efficiency and reliability than what the “cut-off”
philosophy allows (hyperboloidal problem, CCM)

Problem: the threshold to get “running” is higher, attracts less people.
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conformal compactification

Using conformal compactification to an unphysical spacetime, we can discuss AF
spacetimes in terms of local differential geometry (Penrose!).

g̃ab = Ω−2gab, M̃ = {p ∈M|Ω(p) > 0}.

“infinity” → Ω = 0: 3-dimensional boundary of a 4-dimensional region in M.
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Remark on compactifying Einstein Equations

Can obviously not be straightforward:

Einstein’s vacuum equations in terms of Ω & gab:

G̃ab[Ω−2g] = Gab[g]− 2
Ω

(∇a∇bΩ− gab∇c∇cΩ)

− 3
Ω2

gab (∇cΩ)∇cΩ.

singular for Ω = 0, multiplication by Ω2 also does not help here → the principal
part of PDEs encoded in Gab would degenerate at Ω = 0.
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Remark on compactifying Einstein Equations

Can obviously not be straightforward:

Einstein’s vacuum equations in terms of Ω & gab:

G̃ab[Ω−2g] = Gab[g]− 2
Ω

(∇a∇bΩ− gab∇c∇cΩ)

− 3
Ω2

gab (∇cΩ)∇cΩ.

singular for Ω = 0, multiplication by Ω2 also does not help here → the principal
part of PDEs encoded in Gab would degenerate at Ω = 0.

Conformal compactification has been carried to the level of the field equations
by Friedrich, who has developed a judicious reformulation of the equations –
the conformal field equations are regular equations for gab and certain additional
independent variables.

Multiply by Ω2:
for a vacuum spacetime (∇cΩ)∇cΩ = 0 @ J ⇒ must consist of null surfaces!
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1. J is a piecewise smooth null hypersurface in M, generated by null geodesics.

2. The congruence of null geodesic generators of J is shear free.

3. J has two connected components, each with topology S2 ×R.

Taking appropriate limit in M, worldlines of increasingly distant geodesic observers
converge to null geodesic generators of J + (proper time → Bondi time)!

Compactification at i0 leads to “piling up” of waves, at J + this effect does not
appear – waves leave the physical spacetime through the boundary J +.

Under practical circumstances, e.g. computing the signal at a GW detector, J
more realistically corresponds to an observer that is sufficiently far way from the
source to treat the radiation linearly, but not so far away that cosmological effects
have to be taken into account.
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conformal field equations in 30 seconds

Start with splitting Riemann into trace-free (Weyl) and trace (Ricci and scalar)
parts, define tracefree Ricci R̂ab = Rab − 1

4 gab R and rescaled Weyl

Cabc
d = Ω dabc

d.

R̃ = 0 and R̃ab = 0 imply

6 Ω∇a∇aΩ = 12 (∇aΩ) (∇aΩ)− Ω2R,

∇a∇bΩ =
1
4
gab∇c∇cΩ−

1
2

R̂ab Ω. (1)

Commute ∇c∇b in gbc∇c∇b∇aΩ and (1):

1
4
∇a

(
∇b∇bΩ

)
= −1

2
R̂ab∇bΩ− 1

24
Ω∇aR− 1

12
∇aΩ R,
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No equations for gab yet! – use identity defining Weyl

Rabc
d = Ωdabc

d +
(
gcagb

d − gcbga
d
) R

12

+
(
gcaR̂b

d − gcbR̂a
d − gd

aR̂bc + gd
bR̂ac

)
/2.

Equations for dabc
d and R̂ab? – Bianchi identities ∇[aRbc]d

e = 0 imply

∇bR̂a
b =

1
4
∇aR and ∇dCabc

d = 0, (2)

Weyl is conformally invariant,

C̃abc
d = Cabc

d → ∇̃dC̃abc
d = Ω∇d

(
dabc

d
)
,

thus

∇ddabc
d = 0.
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Bianchi identity combined with the definition of Weyl implies

∇aR̂bc −∇bR̂ac = − 1
12

((∇aR) gbc − (∇bR) gac)

−2 (∇dΩ) dabc
d.

For any solution (gab, R̂ab, dabc
d,Ω), R is the Ricci scalar, R̂ab the tracefree Ricci

tensor, and Ω dabc
d the Weyl tensor of gab.

3+1 split → 57 Variables:
hab, kab,
γa

bc,
(0,1)R̂a,

(1,1)R̂ab,
Eab, Bab,
Ω, Ω0, Ωa, ∇a∇aΩ

BUT: there is a lot of freedom, as long as Ω and Eab, Bab remain evolution
variables!
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3+1 – business as usual

signature (−,+,+,+):

gab = hab − nanb = Ω2(h̃ab − ñañb),

ña = Ωna

extrinsic curvature:

k̃ab =
1
2
Lñh̃ab, kab =

1
2
Lnhab

kab = Ω(k̃ab + Ω0 h̃ab), where Ω0 = na∇aΩ.

R̂ab and dabc
d are decomposed as

(0,1)R̂a = nbha
cR̂bc,

(1,1)R̂ab = ha
chb

dR̂bd,

Eab = defcdh
e
an

fhc
bn

d, Bab = d∗efcdh
e
an

fhc
bn

d.
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hyperboloidal hypersurfaces

Components of h̃ab and k̃ab diverge in compactified coordinates – coordinate
independent trace k̃ can be assumed regular everywhere,

Ω k = (k̃ + 3 Ω0), k̃|J = −3 Ω0

J + ingoing null surface: Ω0 < 0 at J + ⇒ k̃ > 0.

Regular spacelike hypersurfaces in M: hyperboloidal hypersurfaces ≡ spacelike
surfaces in M with limr→∞ k̃ > 0

These surfaces are asymptotically null with respect to g̃ab!

In M̃ they are analogous to standard hyperboloids t2 − r2 = k̃2 in Minkowski.



hyperboloidal hypersurfaces

Components of h̃ab and k̃ab diverge in compactified coordinates – coordinate
independent trace k̃ can be assumed regular everywhere,

Ω k = (k̃ + 3 Ω0), k̃|J = −3 Ω0

J + ingoing null surface: Ω0 < 0 at J + ⇒ k̃ > 0.

Regular spacelike hypersurfaces in M: hyperboloidal hypersurfaces ≡ spacelike
surfaces in M with limr→∞ k̃ > 0

These surfaces are asymptotically null with respect to g̃ab!

In M̃ they are analogous to standard hyperboloids t2 − r2 = k̃2 in Minkowski.
If you go further out in space, you also have to go to later times to follow the
radiation!
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Ch abc =
(3)∇ahbc

Ck abc = − (3)∇akbc +
(3)∇bkac +

1

2
hca

(0,1)
R̂b −

1

2
hcb

(0,1)
R̂a − (3)

εab
d
ΩBdc

Cγ abc
d

= − (3)∇aγ
d
bc +

(3)∇bγ
d
ac + γ

d
aeγ

e
bc − γ

d
beγ

e
ac

− ka
d
kbc + kackb

d
+

1

12
ha

d
hbcR−

1

12
hachb

d
R

−
1

2
hb

d (1,1)
R̂ac +

1

2
ha

d (1,1)
R̂bc −

1

2
hac

(1,1)
R̂b

d
+

1

2
ha

d (1,1)
R̂bc

− hacΩEb
d

+ hbcΩEa
d

+ hb
d
ΩEac − ha

d
ΩEbc

CE a = − (3)∇bEa
b − (3)

εabck
bd

Bd
c

CB a = − (3)∇bBa
b
+

(3)
εabck

bd
Ed

c

C (0,1)̂R ab =
(3)∇a

(0,1)
R̂b −

(3)∇b
(0,1)

R̂a + kb
c (1,1)

R̂ca − ka
c (1,1)

R̂cb + 2
(3)

εab
c
ΩdBc

d

C (1,1)̂R abc =
(3)∇a

(1,1)
R̂bc −

(3)∇b
(1,1)

R̂ac −
1

12
hac

(3)∇bR +
1

12
hbc

(3)∇aR +
(0,1)

R̂akbc

− (0,1)
R̂bkac + 2

(3)
εab

d
Ω0Bdc − 2ΩaEbc + 2ΩbEac + 2hcaΩdEb

d − 2hcbΩdEa
d

CΩ a = − (3)∇aΩ + Ωa, CΩ0 a = − (3)∇aΩ0 + ka
b
Ωb −

1

2
Ω

(0,1)
R̂a

CΩa ab = − (3)∇aΩb + habω + kabΩ0 −
1

2
Ω

(1,1)
R̂ab

Cω a = − (3)∇aω −
1

24
Ω

(3)∇aR−
1

12
ΩaR +

1

2
Ω0

(0,1)
R̂a −

1

2
Ω

b (1,1)
R̂ba
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are we trapped by too many equations?
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analyze the situation . . .
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first steps toward simplification

constraints:
• split into independent components – has only been done recently!

evolution equations:
• look for potential feedback terms

general:

• look at the case Ω = 1 – this already leads to interesting new features as
compared to standard GR formulations for NR – the inclusion of curvature
variables!

• look at cases with symmetry
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Lnhab = 2kab, Lnkab =
(3)∇cγ

c
ab + γ

d
bcγ

c
ad + aaab + kc

c
kab − γ

c
abac

+ ha
c
hb

d
∂d∂cq −

R

12
hab −

(1,1)
R̂c

c
hab − 2ΩEab

hadLnγ
d
bc = +

(3)∇akbc − aakbc + ackab + abkac + hdahb
e
hc

f 1

N
∂f∂eN

d
+ . . .

LnEab = +
1

2

(3)
εa

cd (3)∇dBcb +
1

2

(3)
εb

cd (3)∇dBca + a
c (3)

εcb
d
Bda + a

c (3)
εca

d
Bdb

− habk
cd

Ecd +
5

2
kb

c
Eca +

5

2
ka

c
Ecb − 2kc

c
Eab

LnBab = −
1

2

(3)
εa

cd (3)∇dEcb −
1

2

(3)
εb

cd (3)∇dEca + a
c (3)

εbc
d
Eda + a

c (3)
εac

d
Edb

− habk
cd

Bcd +
5

2
kb

c
Bca +

5

2
ka

c
Bcb − 2kc

c
Bab

Ln
(0,1)

R̂a =
(3)∇b

(1,1)
R̂a

b −
1

4

(3)∇aR− kb
b (0,1)

R̂a + ab
(1,1)

R̂a
b
+ aa

(1,1)
R̂b

b

hbcLn
(1,1)

R̂a
c

=
(3)∇a

(0,1)
R̂b −

1

12
habLnR + . . .

LnΩ = Ω0, LnΩ0 − ω + a
a
Ωa −

Ω

2

(1,1)
R̂a

a

LnΩa = aaΩ0 + ka
b
Ωb −

Ω

2

(0,1)
R̂a, Lnω = −

Ω

24
LnR−

R

12
Ω0 −

Ωa

2

(0,1)
R̂a +

Ω0

2

(1,1)
R̂a

a

– Typeset by FoilTEX –



– Typeset by FoilTEX –



The task

Create an approach to numerical relativity which is at least as flexible as the
traditional Cauchy approach, yet as free from ambiguities arising from approximating
the global nature of the problem as the characteristic approach.

Apart from a general computational framework, detailed algorithms and software
modules are needed for the

1. construction of initial data on hyperboloidal hypersurfaces,

2. treatment of grid boundaries,

3. time evolution, including choice and implementation of gauge conditions,

4. computation of gravitational wave information and additional analysis of physical
properties of numerically constructed spacetimes.
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2. redesign overall approach, build up group & computational framework

3. systematically work out details of the most urgent open issues: (i) find suitable
gauges, (ii) work out a boundary treatment, (iii) obtain suitable initial data
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Phase I: before we start our ascent, look back on history and
experiment with existing codes. . .



Phase I: before we start our ascent, look back on history and
experiment with existing codes. . .

∼ 1.5 yrs. have been spent studying earlier work of Hübner, Frauendiener, Weaver,
Siebel (→ SH, gr-qc/0204057 [LNP 617], gr-qc/0204043 [LNP 604])
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To infinity and beyond . . .

Weak data evolve into regular i+ – resolved as one grid cell!

BUT: ∆t = 1 can be a very long time, especially near the end . . .
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The complete future of (the physical part of) the initial slice can thus be
reconstructed in a finite number of computational time steps!

Figure 1: Ĩ = Ω6I.
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already nontrivial: Minkowski evolutions

3 standard ways of compactifying Minkowski:

1. Pseudostatic A (Minkowski → Minkowski)

ds2 = −dt2 + dΣ2
R3 = Ω2(−dT 2 + dR2 + R2

(
dθ2 + sin2 θdφ2

)
,

Ω =
(
R2 − T 2

)−1
=

(
r2 − t2

)
, (3)

where

r =
R

R2 − T 2
, t =

T

R2 − T 2
.

2. Pseudostatic B (textbook) map into part of Einstein static universe (Rg = 6),

ds2 = −dt2 + dΣ2
S3 = Ω2

(
−dT 2 + dR2 + R2

(
dθ2 + sin2 θdφ2

))
, (4)
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Ω2 = 4 (1 + (T −R)2)−1 (1 + (T + R)2)−1 = 4 cos2
t− ρ

2
cos2

t + ρ

2
.

Here the coordinate transformations are

ρ = arctan(T + R)− arctan(T −R), (5)

t = arctan(T + R) + arctan(T −R). (6)

3. Static
ds2 = −Ω2dt2 − 2rdrdt + dr2 + r2dΩ2

Ω =
1− r2

2
, R = 12

(1− r2)(3 + r2)
(1 + r2)3

, trK = 3.

stable?
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Figure 2: gridpoint at center, grid point at x = 0.996 (dashed).



Figure 2: gridpoint at center, grid point at x = 0.996 (dashed).

Figure 3: hxx for x ≥ 0 vs. t with linear and logarithmic scaling.
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Figure 4: hxx (unbroken) and constraints (3)∇xhxx & (3)∇xΩ = Ωx.
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lessons learned

• constraint violating instability appears on continuum level – all EE must be
solved everywhere in the grid! – will require modification of boundary treatment
and equations or gauge or both!

• “plain” densitized lapse is dangerous – eventually we will need live gauges . . .

• we lack a fully working implementation of a constraint solver

• typical for compactified approaches: things happen faster, less room for cheating
by factoring out asymptotic falloff, boundaries are applied in strong field region!

• dont’t touch these equations with bare hands → Computer Algebra

• we need a cheap, clean and flexible code → Cactus
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interlude: gear talk . . .
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computer algebra as a crucial tool

The qyest for stable evolutions requires analysis and coding of different systems of
equations → perfect problems for CA:

• 3+1 decompositions (using abstract indices throughout)
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The qyest for stable evolutions requires analysis and coding of different systems of
equations → perfect problems for CA:

• 3+1 decompositions (using abstract indices throughout)

• modify evolution systems

• analysis: find principal part, . . .

• derive and analyze propagation system of constraints

• linearize equations around exact solutions

• generate code automatically

stress abstract point of view – focus on algorithms!
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• Derivation of the constraint propagation system for (a version of) the conformal
field equations.

• generate a MoL–based evolution thorn

• generate thorn to evaluate quantities (e.g. constraints)

• generate thorn to set quantities

• generate thorn to translate between different representations (e.g. ADM, BSSN)

• generic package to aid in generation of Cactus Thorns (I. Hinder)
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a few details . . .

• the hardest part: find out how you would do the calculations by hand! – then
translate to Mathtensor syntax.

• with precomputation of derivatives: speed comes close to hand coded ADM and
BSSN codes

• code generation scripts do not assume a particular system of equations, set of
variables!

• code generation from lists of variables and equations does not require Mathtensor!

• pattern matching for mathematical expressions is a powerful tool!
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current projects

• improve documentation and user-friendlyness

• include boundary treatment

• runtime/memory optimization of RHS’s

• get rid of mathtensor, port everything to freely available platform

• allow for frame formalism?
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a little bit on coding philosophy . . .

• produce readable code at all levels

so far avoided e.g. Maple or Mathematica (Optimize.m) code optimizers

• method of lines as a software strategy

use Ian Hawke’s MoL thorn

• “generic” finite differencing

collect all FD formulas in one header file, simple switching from 2nd order
centered to 4th order centered, all derivatives = 0, or any other method
implemented

• monitor all constraints
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back to our project . . .
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The “traditional” paradigm

Based on extended hyperboloidal intial value problem + compactification in time.

J + moves, typically contracts.

Constraints are violated outside J +, “spillover” hoped to converge away.

Aim at global structure, no excision.
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The “new” paradigm

Focus on “astrophysical scenarios” – do
not compactify in time.

Avoid spacetime regions of uncontrollable
constraint violation: J is the limit –
requires spherical boundary!

J -fixing shift must be made compatible
with well–posedness.

Can we come close to a Bondi-gauge?

Coordinate gauges might mimick
uncompactified case – how can we handle
conformal gauge?

ScriEH

excised

null
geodesics
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• Practice trade of 3D codewriting: CFE, Ω = 1, ADM, Wave Eq., BSSN, E&M

• Practice trade of creating simple toy problems: E&M on flat background:
Ln(divE) = −trK divE, LnE = −trK E + . . .
There is a regime between perturbative and full nonlinar: coordinate changes
(constant coeff. → nonconstant and new coefficients)!
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outlook: the route

. . . organized in camps, according to standard big mountain climbing strategy, we
go back and forth between camps regularly . . .
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Camp I – periodic boundary conditions in 3D

For the moment: Focus on periodic boundary conditions to get a clean problem.
One might hope to get rid of constraint violating “junk” through good boundary
conditions, but in the fully nonlinear case, that seems a big hope!

• compare different formulations

• get a feeling for Ω ≡ 1–case

• experiment with gauge conditions

• Mexico tests as essential health checks

There are number of interesting tests to be performed with periodic boundaries
beyond Mexico I!
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Camp II – 1D with boundary

• Test gauges and formulations!

• Schwarzschild? – Static representation of Minkowski?

• Can instabilities be understood mathematically?

• Understand solution of the constraints at least in this simple case!

• Aim: stable evolution of Schwarzschild!
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Camp III – 2D

• Obtain a large class of initial data!

Assume k̃ab = 1
3 k̃ h̃ab

h̃ab = φ4
(
Ω̄−2hab

)
→ R̃(h̃) = k̃abk̃

ab − k̃2,

⇒ “elliptic” equation – principal part vanishes @ S
⇒ boundary values fixed!

Ω2 4 φ + · · · = 0.

• Experiment with evolution inside spherical boundary?
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Camp III – toy models in 3D with boundary

Proceed the natural way: Wave equation, Maxwell, linearized Einstein

2 Elements to be tested:

1. spherical boundary

2. boundary at future null infinity

no boundary conditions needed/allowed execpt potentially for gauge, but gauge is
tricky & probably need to feed in info from constraint propagation along boundary?
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Camp IV – GR with boundary at J

Implement a generic initial data solver that works for hyperboloidal slices.

Which issues will arise from combining the machinery needed to deal with spherical
boudnaries with the full nonlinear theory?
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Camp V – improve stability

The standard tricks apply, in addition there is extra gauge freedom, e.g. trK is
completely free!
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Conclusions

1. there is a long way to go

2. but it could be worth it
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