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• Issues to deal with…

• Standard Cauchy approach

• Standard characteristic approach

• Conformal approach 
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Einstein eqns in the computer

• Solve Gµν = κTµν through simulations
– nonlinear PDE system

– Singularities

– ‘evolution’ (?)

– Gauge issues

– Initial and boundary data

• Fluid?
– Shocks

– Initial and boundary data

+
Computat 
Resources:

AlGORITHM 
ISSUES…

Black Holes

• Either there or will be there in a # of 
interesting problems

• ‘Tricky’ to handle analyticall y

• Computational nightmare!

• What to do?

• Excise (in principle, OK, if 
cosmological censorship )

• (I) Black hole ‘ found’ a-posteriori

• Look for trapped surfaces

• (II) Yet another boundary to deal with

• (ab) use the one-way flow

Event Horizon

Trapped Surface

Surface of Star
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Excision
• Why works? (or would work)

– Physicall y: spaceli ke surface, (ie. moving faster than c)

– Mathematicall y: ‘ in-flow’ boundary. (ie. All characteristics towards it)

• Why worry?
– Coordinates can move faster than c!

– At a given boundary, even inside the event horizon, characteristics might not 
be all incoming!

• Example: x=const surface, Scwarzschild in PG or KS coordinates isn’ t spacelike 
if x>2/33/2M isn’ t always spacelike even inside the black hole.

• 3+1 Decomposition spli ts thespacetimemetric into a 3-metric on each sli ce, an 
extrinsic curvature of the hypersurface, a lapse function and a shift vector.

• Vacuum Einstein field equations decompose:

3+1 Decomposition of Spacetime

Constraint Equations

Evolution Equations

Analogy to Maxwell

Maxwell Analogy
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Observations and questions

• Instabilities abound!
– Exponential solutions commonly found

– Constraints (when used as monitors) exponentiall y diverge.

– ‘Equivalent’ reformulations of the equations give drastically different 
behavior, even when these have ‘nice’ properties [Kidder et.al]

• YET: Under very conveniently chosen coordinates, things look quite OK 
[Yo,et.al.; Alcubierreet.al, Kelly et.al]….but for which systems?

• Qns:
– Is there a way to eliminate/minimize exponential growth?

– Are constraints to blame for all/most of problems?

– Are equations conveniently written?

– Are problems due to using ‘simplistic’ boundary conditions?

– { all of the above and then some?}

Partial answers

• Simulations with ADM, free evolution, typically unstable.
– Note: except under specialized coordinates, system only weakly hyperbolic

– Weakly/strongly/symmetric hyperbolic distinction obtained by analyzing 
solely principal part of equations:

– Weakly hyperbolic: unstable under generic lower order perturbations

– Strongly/symmetric: stable for initial value problems (no boundaries)

– Strongly hyperbolic: deli cate in presence of boundaries [Sarbach-Calabrese]

– Einstein eqns, satisfied if:
• Initial data satisfies the constraints (consistency cond’ n)

• Boundary data doesn’ t feed constraint violations
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Observation: for our goals wrong BD can make ID completely irrelevant!
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ISO ‘best’ formulation (1)

Note: evolution eqns non-unique, use constraints to ‘modify’ them

• One road: ‘slight’ modifications of ADM. ‘Most popular’ one: BSSN.
– ‘Structure’ of eqns very much like ADM. Use constraint eqns to free the 

system from ‘undesirable’ terms.

– Unclear hyperboli c properties in most ‘ flavors’ found. (Though, could be 
made symm. hyperboli c [Sarbach-Tiglio] ).

(Alcubierreet al)

•Second road: obtain explicitly symmetric/strongly hyperbolic 
systems.

–In most flavors, reduction to first order form used. Consequently, ~2-3 times as many variables. 
[Though this isn’ t needed, Kreiss-Ortiz (2nd/2nd); Nagy-Reula-Ortiz (1st/2nd)]

–Amenable to use rigorous results from appli ed math to guarantee stable implementations [most 
for 1st oder formulations]

Added bonus of ‘hyperbolic road’:
–Exploit ‘expected growth’ of solution [at the core of establi shing stabil ity at 
continuous level] to come up with ‘better’ options.

•Constraint behavior:
–Enlarge system, include evolution of constraints driven to constraint surface [Brodbeck,
Frittelli , Huebner, Reula]

–Examine constraint growth at the onset [Lindblom-Scheel]

–Modify eqnsto force constraints to behave well [Fiske]

–Choose parameters ‘on the fly’ according to evolution [Tiglio]

•Stability:
–Conserved quantities can be exploited to guarantee desired stabil ity (no exponential 
growth!) [Calabrese,LL,Neilsen,Pull in,Sarbach,Tiglio]

•Boundaries:
–Exploit mode propagation knowledge to (i) assess stabil ity of evolution eqns, (i i) 
come up with constraint preserving boundary conditions. 
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Alternative
– Adopt a constrained evolution strategy.

– What to solve for? [Lichnerowicz-York approach]

– Examples: GR in axysimmetry [Choptuik,Hirschman,Liebling,Pretorius]

GR in 3D [Anderson,Hawley,Matzner]

Caracteristic formulation

))((/ 22222 duUrdxduUrdxhdurVedS BBAA
AB −−+−= β
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• Spacetime can be compactified, outer boundary is a causal boundary.
– No boundary conditions needed there, no inconsistencies fed in.

• Structure of eqns: (2) first order in time + (4) ‘contraints’

• Coordinates: more restricted, free only at a given worldtube

• Well posed known only for the case inner boundary also null.

• Main difficulty: Caustics/crossovers render coordinates singular!
– Way out: (I) Treat them ‘analytically’ [Friedrich-Stewart]

(II)  Use multiple patches & independent formulations on each [LL].

• Characteristic codes ‘ finished’ and in place:
– 3D [Bishop-Gomez-LL-Maharaj-Winicour; Bartnik-Norton]

– 2D [D’ Inverno et. al]

tu

t

t+1 r

Example: Black hole – ‘neutron’ star system

– Bdry data −> induced from Schwarzschild

– Initial data. Unconstrained in this approach. Almost any data is
consistent!. Physicall y relevant?… In this case, obtained from a 
‘Newtonian’ correspondence

•Write eqns in conservation form (need ‘new’ variables).

•P:=(ρ,ε,u)
�

N:=[det(g)]1/2 (Too, T0i, J0)

•N,t + Fj,x = S (*)
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Polytrope– BH system 
D = 10M; m = 10-2

R = 3.5M; Γ= 2

Too slow, too coarse and not accurate enough!

Work with Bishop, Gomez, Winicour & Maharaj

Co-rotating coordinates (Non-trivial U|Γ)
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Outlook
• In its simplest form, suited for:

• Perturbations off single black hole spacetimes

• Study of asymptotic structure of spacetimes

• Matching to a Cauchy formulation to ‘ remove’ hard boundaries.

• Open questions
• Stability (rigorous) to timeli ke-null boundary problem?

– ‘experimental’ evidence strong [ie. problems not seen]

– Translate steps involved in assessing stabil ity of IVBP of Cauchy approach.

• Physicall y interesting boundary conditions.

Conformal approach to EE
• [Friedrich 80’s]. Key: construct a conformal spacetime and obtain the physical 

one a posteriori. 

• Peculiarities: (Cauchy approach)

– Eqns more ‘ involved’ , include eqns for (conformal) Weyl tensor
– 5 ‘gauge’ functions. Lapse, shift and ‘extra’ one

– Outer boundary: ‘hidden’ by future null infinity (ie. disconnected from physical 
spacetime)

– Initial data:
• Conformal constraints quite compli cated.
• As far as ‘ physical spacetime’ , only need to solve for a subset of variables [Friedrich, 

Anderson, Chrusciel]. Procedure solve in physical, tailor/extrapolate 
outside…[Frauendiener]

( ) ( )ΘΩΘ=Ω ,~, 2
abab gg
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Example
• ‘Linear waves’ on flat spacetime 

[Husa-Weaver]

• Evolution tracked; whole spacetime 
obtained; regular i+

• Reproduced Friedrich’s result 
(~related to Christodolou-Klainerman’s)

i+

Advantages

• No need for physicall y relevant boundary conditions, stable ones will do

• Flexible to consider other approaches within it; ie. Characteristic approach in 
principle equally doable.

• If asymptotic structure is to be explored, ideally suited for it!

Disadvantages(?)/little explored areas
• Initial data issue: Why expect good evolutions if constraints violated in the 

unphysical part?

• Coordinate conditions, what’s a convenient way to fix the extra freedom?

• Common to ‘standard’ Cauchy approach:
– If using a free evolution, can one choose an ‘ ideal’ re-formulation of the eqns?
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Other questions

• Accuracy?
– Most expected radiated energy from ‘most violent’ systems ~5%

– ‘systematic’ errors must be well below this!

– � back of envelope calculation (uniform grid): 
• 4 orders of magnitude off at least for 1 day turn around (Teraflop 

machine)

• 100’s terabytes…

• Need adaptive mesh capabilities and/or extra infrastructure 
(domain decomposition, multiple patches, alternatives to 
finite differences: [spectral methods, finite elements]).

Final comments
• In GR one size doesn’ t fit all, same holds for numerical relativity.

– 3+1: general, flexible gauge, timelikeouter boundary, most popular. Consistent 
initial data requires elli ptic eqns be solved [Lichnerowicz-York]. (Constrained 
evolutions feasible).

– characteristic: more restrictive, rigid gauge, null outer boundary (at future null 
infinity), when it can be applied works ‘scarily’ well. Can be used to study most 
‘asymptotic questions’. Consistent initial data is trivial.

– conformal: general, flexible gauge, outer boundary hidden by null infinity, can 
accommodate for the 2 previous, ID and gauge more involved. Can be used to 
study all ‘asymptotic questions’. Consistent initial data, similar to standard 3+1 in 
physical spacetime. (Constrained evolutions feasible.)

Very open questions

• How to give physicall y relevant initial/boundary data? 

• For boundary data, how to give it so that is stable?


