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Astrophysical Motivation

Astrophysical plasmas are commonly

magnetized, with

ρv2/2 ∼ B2/8π

MHD approximation

Broad class of luminous astrophysical sources

likely accreting black holes

galactic microquasars

active galactic nuclei

gamma-ray bursts

Dynamics of accretion flows controlled by

magnetic fields

Balbus-Hawley instability

Disk winds

Blandford-Znajek effect



Thin disk simulation

Note event horizon, plunging region, centrifugally supported disk



GRMHD Equations

Particle number conservation:
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Ideal MHD:
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Momentum and energy conservation:

∂t
(√
−g T t

ν

)

= −∂i
(√
−g T i

ν

)

+
√
−gT κ

λΓ
λ
νκ
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Induction equation:

∂t(
√
−gBi) = −∂j(

√
−g(bjui − biuj)) ∂tB = ∇× (v ×B)

∂tB = −∇(vB−Bv)

No monopoles constraint:

∂i(
√
−gBi) = 0 ∇ ·B = 0



Free Oscillations

Nonrelativistic MHD supports 8 modes:

ω2 entropy, monopole

×[ω2 − (k ·VA)
2] Alfven

×[ω4 − ω2k2(V2
A + c2s) + k2c2s(k ·VA)

2] slow, fast

= 0 VA ≡ B√
4πρ

Relativistic MHD also supports 8 modes:

ω2 entropy, monopole

×[ω2 − (k ·VA)
2] Alfven

×[ω4 − ω2(k2(V2
A + c2s −V2

Ac
2
s/c

2) + c2s(k ·VA)
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2] slow, fast
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4π(ρ+u+p+b2/(4π))



Inflow Solution

Quasi-analytic model for flow in plunging region.

Assume flow is:
stationary
close to equatorial plane
along lines of constant θ
cold (zero pressure)

Fully integrable

Find fast critical point, solve.

Analogous to Weber-Davis model for solar wind.

Gammie (1999), Takahashi et al. (1990), Li (2003)



Magnetized, equatorial inflow for a/M = 0.5

(Boyer-Lindquist coordinates)



specific angular momentum of inflow solutions



Algorithm: HARM

Physics

geometry described by line element

ideal fluid dynamics

magnetohydrodynamics

No cooling

Algorithm

conservative, shock-capturing (HLL solver)

zone-centered

constrained transport, ∇ ·B = 0 to machine precision

second order on smooth flows

54K zone cycles/second on 2.4GHz PIV

Gammie, McKinney, Tóth (2003)

also DeVilliers & Hawley (2003), Koide et al. (1999)



Code Verification

Nonrelativistic Tests

Ryu & Jones shock tubes

Orszag-Tang vortex

Special Relativistic Tests

Linear modes, up to b2/ρ = 106

Komissarov’s shocks

Transport

General Relativistic Tests

Bondi flow (a/M = 0)

Magnetized Bondi flow (a/M = 0)

up to b2/ρ = 103

Magnetized equatorial inflow (a/M = 0.5)

Fishbone-Moncrief torus (a/M = 0.9)



Slow wave convergence



Alfvén wave convergence



Fast wave convergence



Density for Komissarov’s nonlinear waves



Internal energy for Komissarov’s nonlinear waves



Ryu & Jones test 5A (Brio & Wu) with c = 100



Ryu & Jones test 2A with c = 100



Transport test convergence



Orszag-Tang vortex, HARM vs. VAC, with c = 100



Orszag-Tang vortex, HARM vs. VAC, with c = 100



Convergence results for Bondi flow



Convergence results for magnetized Bondi flow



Convergence results for a Fishbone-Moncrief donut in the

Kerr metric with a/M = 0.9



Convergence results for magnetized equatorial inflow in the Kerr

metric with a/M = 0.5



Black Hole Accretion

Model

Kerr metric

Kerr-Schild coordinates (reg. on horizon)

a/M = 0.7

Fishbone-Moncrief torus

small (βmin = 100) poloidal field

Numerics

r, θ transformed to refine disk

resolution 2562

rin = 1.68M , inside horizon

rout = 80M

floor in low density regions

evolved for 3000M



color shows log(density)



Results: Torque on Inner Disk



Spin Equilibrium at a/M ∼ 0.9



Summary

Code

Fully relativistic MHD code

verified on wide range of problems

numerical difficulties for b2/ρÀ 1

Spin Equilibrium

d(a/M)/dt = 0 at a/M ∼ 0.9

for thick (high accretion rate) flows

thin flows differ

Future

several GRMHD solvers now exist

measure Blandford-Znajek effect

spacetime evolution with elecromagnetic sources


