Dynamical environments are interesting III: Can we find them, & making very exotic sources

Richard O'Shaughnessy

2019-07-16 17 Gravast19

Part 1: Identifying eccentric sources [skip me]

Eccentricity for GW: A review (ground-based IFOs)

- Circular
 - Locally constant separation
 - Monotonic orbital phase

$$\Phi_{orb} \simeq \omega_{orb} t$$

- Eccentric
 - Time-varying separation
 - Strong field stronger
 - Phase more complex
 - Multiple harmonics, impacts detection & PE for band-limited IFOs

$$t\omega_{
m orb} = \psi - e\sin\psi$$
 • Technical: tools from dynamics
$$\psi = t\omega_{
m orb} + \sum_{n=1}^{\infty} \frac{2}{n} \sum J_n(ne) \sin nt \omega_{
m orb}$$

$$r/a = 1 + e^2/2 - \sum_{n=1}^{\infty} \frac{2e}{n} J_n'(ne) \cos nt \omega_{
m orb}$$

Eccentricity for GW: A review (ground-based IFOs)

- Circular
 - Without precession, simple

$$h_{lm} = A_{lm}e^{-im\Phi_{orb}}$$

Strongly modulated, e ~ 1/f late

$$h_{lm} = \sum_{k} A_{lmk} e^{-ik\Phi_{orb}}$$

Huerta et al 1408.3406

4

Eccentricity for GW: A review (ground-based IFOs)

- Circular
 - Without precession, simple

$$h_{lm} = A_{lm}e^{-im\Phi_{orb}}$$

Strongly modulated, e ~ 1/f late

$$h_{lm} = \sum_{k} A_{lmk} e^{-ik\Phi_{orb}}$$

Impact of eccentricity on searches

- Rules of thumb:
 - Binary highly circular, unless large eccentricity at fmin
 - Small phase deviations can be captured by search templates
 - Large eccentricity ... work in progress [Tai et al 1403.7754, Tiwari et al 2016 PRD, Thrane & Coughlin; Abbott et al 2019; ...]

Huerta and Brown (1301.1895) templates [neutron stars, e0 at 15 Hz in aLIGO]

Tiwari et al PRD 2016 burst search [O2, e0 at 24 Hz]

Impact of eccentricity on searches

- Rules of thumb:
 - Binary highly circular, unless large eccentricity at fmin
 - Small phase deviations can be captured by search templates
 - Large eccentricity ... work in progress [Tai et al 1403.7754, Tiwari et al 2016 PRD, Thrane & Coughlin; Abbott et al 2019, ...]

Huerta and Brown (1301.1895) templates

Tiwari et al PRD 2016 burst search [O2]

Accessing eccentricity?

- Eccentricity decreases rapidly, but we can form ~ in band
 - Eccentricity and precession usually expected simultaneously (ouch!)
- Modest eccentricity: Very accessible observationally (LIGO)
 - Example (Lower et al 2018): GW150914-like event, full eccentric PE .. e>0.05 fine!
 - Example (George/Huerta, PhysLett B 2018): Machine learning for point estimates
 - Example (Gondan et al ApJ 2018): Fisher estimate (below), for high-SNR systems

Using inspiral-only model

- Main limitation: Reliable models (for search or training) for massive BBH
 - ...in progress (e.g., NCSA group and others)

 $e_0 = 0.9, \rho_{p0} = 10$

 $e_0 = 0.9, \rho_{p0} = 20$

 $\log_{10}(\Delta e_0)$

Part 2: Contribution from AGN disks

McKernan, Ford, ROS, Wysocki 2019 (1907.04356)

Yang, Bartos et al (1906.09281)

Mass & event rate: where we are now

Mass & event rate: where we are now

...but where did they come from?

- Conventional [cluster,field], or
- Primordial?
- Near supermassive BHs?

brief but efficient mechanism

McKernan 2012,2014; Bartos 2017, McKernan 2018, Secunda 2018 ...

See also McKernan, Ford, ROS, Wysocki 2019 (1907.04356)

 ...outliers and exotic products as signatures?

AGN disks: making high mass & high-q binaries

- Many BHs near galactic nucleus
- During active phase, disk can capture them ... brief but efficient
- BHs migrate through the disk
 - Bigger go faster
 - "Migration trap" ~ 100 M: balanced torques

With migration and "grind-in": high-q, high-M

- · Simulate this a lot, see what masses/spins of BBHs form, how often, & why
 - Two-component phenomenology (time-averaged): "trap" and bulk
 - Trap: Builds up ~ O(1) IMBH at a time, linearly

AGN disk growth of BHs

- Most mergers in "bulk", similar to input population
 - Build up (hierarchical) IMBHs

AGN disk growth of BHs

- Most mergers in "bulk", similar to input population
- Hierarchical spins ($\chi_{
 m eff}$) are bimodal

Some context: Rates?

- Examples of recent estimates: McKernan ApJ 2018; Stone et al 2017 MNRAS; Ford & McKernan 2019
- "AGN" volume density:
 - $10^{-3} \rm Mpc^{-3} \\ 2\times 10^{-5} M_{\odot}/\, Mpc^3_{\rm mod~lifetime/duty~cycle:~\sim}$ Best estimate: Current galaxy/SMBH density [X-ray bg (Cowie et al 2003, ...); X-ray selected AGN surveys; cosmo sims matching AGN LF (e.g., Hirschmann 2013)]. Rate vs redshift similar to SFR (/1000)
- Integrated disk masses: Very large lazy estimate $\dot{M}_{\rm edd} \tau_{AGN} \simeq 2 \times 10^6 M_{\odot} \frac{\tau}{10 \text{Myr}} \frac{M}{10^8 M_{\odot}}$
 - Expect many BHs formed in flow [e.g., Stone et al 2017] ...implies lower limit on BH merger rate
 - Disk strongly impacts BH binary formation, evolution [migration, binaries]
- Many BHs near SMBH due to mass segregation / cusp [e.g., our GC ~ 104, review Amaro-Seoane et al 2007]
 - Accretion flow & stellar dynamics advect/segregate BHs into AGN disk
 - Must also get "ground" into disk plane [e.g., McKernan et al 2014 and refs therein]
 - Assume O(1000) BH initially, O(100/Myr) advected

Some context: Rates?

• Examples of recent estimates: McKernan ApJ 2018; Stone et al 2017 MNRAS; Ford & McKernan 2019

$$\mathcal{R} \simeq n_{gn} \frac{(N_{bh} f_d) f_{AGN} f_b}{\tau_{AGN}}$$
$$\simeq 10^3 \frac{N_{bh} f_d}{10^4} \frac{10 Myr}{\tau_{AGN}} f_{AGN} f_b$$

simplified version of McKernan 2018

 $f_{
m AGN}$ fraction of GN that are merger sites

 f_b fraction of BHs that form binaries (some left behind,...)

 $N_{bh}f_b$ number of BH that enter disk

Comparing with observations?

- Consistent with spin, q for 170729, given a plausible seed population (BF ~ 1)
- Similarly: No compelling evidence favoring a hierarchical scenario in some earlier work (without, with HM: Kimball et al arxiv:1903.07813 Chatziouannou et al 1903.06742)

Comparing with observations?

- AGN constraints are already interesting
 - Limits parameter space of possible AGN e.g., Ford & McKernan 2019

Model	$R_{\rm trap}$		$lpha_{ m trap}$		$R_{ m bulk}$		$lpha_{ m bulk}$	
Fixed	0.00	10.82	-10.56	10.92	32.19	167.09	0.59	1.85
Free	0.00	161.14	-10.72	10.84	7.50	143.26	-3.37	1.60

 Example: Merger rate limits from AGN disk model (real data & simulated O3, assuming no "trap" signatures)

Bonus slides

Run parameter table

Run	$N_{ m BH}$	$N_{ m gr} \ (/{ m Myr})$	γ	$M_{ m Lower} \ (M_{\odot})$	$M_{ m Upper} \ (M_{\odot})$	$ au_{ m AGN} \ m (Myr)$	а	$\operatorname{trap} (r_{\mathrm{g}})$	disk	t/t_+
R1	869	10 ²	1	5	50	1	u	$700r_{\rm g}$	SG	5
R2	869	10^{2}	1	5	50	1	u	$700r_{\rm g}$	SG	1
R3	100	10^{2}	1	5	50	1	u	$700r_{\rm g}$	SG	5
R4	851	10^{2}	2	5	50	1	u	$700r_{\rm g}$	SG	5
R5	851	10^{2}	2	5	50	5	u	$700r_{\rm g}$	SG	5
R6	851	10^{2}	2	5	15	1	u	$700r_{\rm g}$	SG	5
R7	851	10^{2}	2	5	50	1	(1-a)	$700r_{\rm g}$	SG	5
R8	851	0	2	5	50	1	ů	$700r_{\rm g}$	SG	5
R9	851	0	2	5	50	5	u	$700r_{\rm g}$	SG	5
R10	851	0	2	5	50	5	u	$700r_{\rm g}$	SG	1
R11	851	10^{2}	2	5	50	1	u	none	SG	5
R12	851	10^{2}	2	5	50	1	u	$500r_{\rm g}$	TQM	5