How Can We Find Supermassive Binary Black Holes—Now!

How Can We Find Supermassive Binary Black Holes—Now!

Or, What Kinds of Photons Should We Search For?

Why Supermassive Binary Black Holes Should Radiate More Photons Than Stellar Mass Systems

Bondi accretion:
$$\dot{M} \sim \left(\frac{GM}{c_s^2}\right)^2 \rho c_s \propto M^2$$

Why Supermassive Binary Black Holes Should Radiate More Photons Than Stellar Mass Systems

Bondi accretion:
$$\dot{M} \sim \left(\frac{GM}{c_s^2}\right)^2 \rho c_s \propto M^2$$

+ Non-axisymmetric density after galaxy mergers, spiral shocks, etc.

Basic Problem: Distinguishing SMBBHs from AGNs

Energy from radiation comes from accretion;

Most of the energy is released near the ISCO;

For a $> 20-30~r_g$, near-ISCO regions of minidisks look just like those in solitary AGN

Basic Problem: Distinguishing SMBBHs from AGNs

Energy from radiation comes from accretion;

Most of the energy is released near the ISCO;

For a $> 20-30~r_g$, near-ISCO regions of minidisks look just like those in solitary AGN

How can binary black holes be robustly distinguished from solitaries?

Basic Structure of Accreting Binaries

- For $q = M_2/M_1 > \sim few\%$, accreting binary carves a low-density gap in the circumbinary disk, radius $\sim 2a$ (quadrupole prevents closed orbits)
- Two streams leave circumbinary disk's inner edge: circ-j gas torqued and returns to cbd, low-j gas feeds minidisks
- For q >~0.1 0.2, cbd inner edge forms "lump", breaks stream symmetry, modulates inflow at Ω_{lump}
- Secondary captures more mass than primary
- Accretion streams shock at edges of minidisks, torqued gas at inner edge of cbd.
- Even when t_{GW} < t_{inflow}, accretion continues

q=1 q=0.1

Potentially Distinctive Signals

- Alteration to continuum spectrum (radio/IR/optical/UV/X-ray?)
- Alteration to emission line profiles (optical/UV, X-ray)
- Periodic modulation of any property: which band? at which frequency? under which circumstances?

Generic Problems

Predictions:

How do any proposed signals relate uniquely to binarity?

Do we understand the emission physics well enough to be confident in the prediction?

Observations:

Are there enough examples sufficiently bright? Gap region associated with little energy unless a/r_g <~ 1000, but $t_{\rm GW} \simeq 1.3 \times 10^5 \left[(1+q)^2/q \right] M_7 (a/1000 r_g)^4 \ {\rm yr}$

Confirming periods can be difficult:

Red noise —> spurious periodicity at ~T/3

False alarm probabilities ("a posteriori statistics")

 $P \sim 0.3 (a/1000 r_g)^{3/2} M_7 yr$; need multiple periods

Specific Proposals: Long-Lived Signals

Continuum Spectrum: the "notch"

Energy that might have been emitted in a thermal spectrum by matter accreting across r ~a instead radiated in shocks—> gap in gas produces gap in spectrum

Assumes:

- exact NT73 behavior in cbd and minidisks
- ignores stream shocks Modified if t_{inflow} (minidisks) <~ P_{bin} Unlikely to see both loss and recovery in single spectrum

Continuum Spectrum: X-rays from Stream/Minidisk Shocks

Compton cooling implies hard, strongly Comptonized spectrum, rapid post-shock cooling:

$$T_s \sim 6 \times 10^9 (a/1000 r_g)^{-1} [(q^{0.3}, q^{0.7})/(1+q)] \text{ K}$$

 $t_{\text{cool}} \Omega \sim 1 \times 10^{-2} (\dot{m} f_{1,2})^{-1} (k T_e/m_e c^2) (a/1000 r_g)^{-1/2} (q^{0.15}, q^{1.35})/(1+q)^{3/2}$
 $y \approx 5 (\dot{m} f_{1,2})^2 (a/1000 r_g)^{-1} (q^{0.3}, q^{-1.3})(1+q)$

Accretion modulation —> hard X-ray modulation

Difficulties:

high bkgd., need multifoil mirrors for focusing (small FoV) all the periodicity problems

Source Counts (?)

Thermal Continuum Periodicity

Mechanism either accretion stream modulation or Doppler boosting

Need $t_{inflow} < \sim \Omega_{lump}^{-1}$ for former, which requires a $< \sim 20-30~r_g$ Amplitude of latter small unless a $< \sim 100~r_g$ And period measurement difficulties...

Broad Emission Line Profiles

Assumes:

 Black holes carry their own broad line regions, with structure roughly "normal"

Signature:

- double-peaked profile;
- or periodically-varying profile

- If BLR motions gravitational in scale, profiles superimposed unless a <~ r_{BLR}
- How do binary illumination, binary potential, interacting BLR fluids, affect line emissivity, profiles?
- We don't know geometry, dynamics of solitary BLRs; how to predict changes in binary?
- Plus the usual difficulties posed by period-hunting

Specific Proposals: Event Signals

Systems Approaching Merger

$$t_{\rm GW} \simeq 8 \left[(1+q)^2/q \right] M_7 (a/20r_g)^4 d$$

r_{minidisk} ~ few r_{ISCO} —> t_{inflow} <~ P_{bin} —> output follows accretion modulation

- —> Strong accretion modulation
- + Doppler boosting, beaming

Systems Approaching Merger

$$t_{\rm GW} \simeq 8 \left[(1+q)^2/q \right] M_7 (a/20r_g)^4 d$$

r_{minidisk} ~ few r_{ISCO} —> t_{inflow} <~ P_{bin} —> output follows accretion modulation

- —> Strong accretion modulation
- + Doppler boosting, beaming

Leads to gas disposition immediately before merger proper

