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stellar modes
basic overview of modes

● p-modes
○ high frequencies
○ ω∝n (radial order)

Aerts+(2010) Fig 3.14
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Aerts+(2010) Fig 1.7
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basic overview of modes
● p-modes

○ high frequencies
○ ω∝n (radial order)

● g-modes
○ low frequencies
○ P∝n (radial order)

● f-modes
○ no radial nodes

5

stellar modes

Aerts+(2010) Fig 3.20
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basic overview of modes
● p-modes

○ high frequencies
○ ω∝n (radial order)

● g-modes
○ low frequencies
○ P∝n (radial order)

● f-modes
○ no radial nodes

● r-modes
○ rotational/inertial modes
○ often “mixed” with g-modes
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basic overview of modes
● p-modes

○ high frequencies
○ ω∝n (radial order)

● g-modes
○ low frequencies
○ P∝n (radial order)

● f-modes
○ no radial nodes

● r-modes
○ rotational/inertial modes
○ often “mixed” with g-modes

● w-modes
○ metric oscillations
○ only present in relativistic stars
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stellar modes

Aerts+(2010) Fig 3.20
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equations of motion for mode amplitudes can be described via a Galerkin decomposition
based on the linear eigenmodes.
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multi-mode interactions

l=1 l=2 l=3 l=4 l=5



equations of motion for mode amplitudes can be described via a Galerkin decomposition
based on the linear eigenmodes.

generally produces a complicated coupling topology between 
modes, which can produce rich dynamical behavior (Weinberg+(2012)).
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multi-mode interactions

linear tide daughter modes
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coupling



equations of motion for mode amplitudes can be described via a Galerkin decomposition
based on the linear eigenmodes.

generally produces a complicated coupling topology between 
modes, which can produce rich dynamical behavior (Weinberg+(2012)).

coupling strength determined by overlap integrals between
mode shapes with respect to the background (unperturbed)
stellar structure.

● integrals over 3+ mode shapes may not vanish!
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multi-mode interactions

linear tide daughter modes
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survey of tidal effects
linear dynamical tides and (resonant) nonlinear dynamical tides

GW-driven inspiral sweeps through 
resonances too fast to efficiently 
transfer energy through resonant 
interactions. see Hang’s 

poster!

11Yu+(2016) Fig. 6
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high-frequencies
● stronger coupling
● less time near resonance
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survey of tidal effects
linear dynamical tides and (resonant) nonlinear dynamical tides

GW-driven inspiral sweeps through 
resonances too fast to efficiently 
transfer energy through resonant 
interactions.

high-frequencies
● stronger coupling
● less time near resonance

low-frequencies
● weaker coupling
● more time near resonance

large spins may shift long-wavelength 
modes to lower frequencies, thereby 
increasing the amount of time spent on 
resonance (Ho+1999).

see Hang’s 
poster!

13Yu+(2016) Fig. 6
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survey of tidal effects
(nonresonant) p-g secular instabilities

● instability of the linear tidal bulge coupled to a high-frequency p-mode and a low-frequency g-mode 
(Weinberg+(2012)).
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survey of tidal effects
(nonresonant) p-g secular instabilities

● instability of the linear tidal bulge coupled to a high-frequency p-mode and a low-frequency g-mode 
(Weinberg+(2012)).

● present in degenerate stars because p- and g-mode propagation regions overlap significantly.
○ coupling coefficients in the Galerkin decomposition can be large.
○ could be important for compact systems containing either Neutron Stars or White Dwarfs.
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survey of tidal effects
(nonresonant) p-g secular instabilities

● instability of the linear tidal bulge coupled to a high-frequency p-mode and a low-frequency g-mode 
(Weinberg+(2012)).

● present in degenerate stars because p- and g-mode propagation regions overlap significantly.
○ coupling coefficients in the Galerkin decomposition can be large.
○ could be important for compact systems containing either Neutron Stars or White Dwarfs.

● nonresonant and active whenever the linear tidal perturbation is above some threshold.
○ equivalently, when orbital separation is below some threshold or when orbital frequency is above some 

threshold.
○ 4-mode couplings are also important (Venumadhav+(2016)) and can dynamically cancel part of the 

instability, but an instability still exists for dynamical tidal fields.
○ finite-frequency and other non-adiabatic effects on mode shapes spoil the cancellation between 3- and 

4-mode interactions, resulting in smaller but still possibly relevant growth timescales (Weinberg 
(2016)).

● difficult to simulate
○ spatial grid required to resolve high-order g-modes is prohibitively expensive.
○ larger number of relevant coupled modes makes Galerkin amplitude equations difficult to simulate.
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survey of tidal effects
(nonresonant) p-g secular instabilities

● phenomenological model
○ dissipation by p-g instability modifies orbital evolution and Gravitational-Wave phase (Essick+(2016)).

A0: overall amplitude of induced phase shift

f0: saturation frequency ~ instability threshold assuming modes grow quickly

n0: scaling of energy dissipated as a function of frequency
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worked example: p-g instabilities with GW170817
(nonresonant) p-g secular instabilities

LVC+Weinberg (2018) Fig. 2
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worked example: p-g instabilities with GW170817
(nonresonant) p-g secular instabilities

LVC+Weinberg (2018) Fig. 2



worked example: p-g instabilities
(nonresonant) p-g secular instabilities

LVC+Weinberg (2018) Fig. 3LVC+Weinberg (2018) Fig. 2

≤ 0.1% energy radiated as GW
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Can Equation of State 
Constraints help?
linear resonant tides

● yes!
● knowledge of the EOS specifies the mode 

spectra and shapes.
● but these effects are likely to be negligible 

anyway...

Landry+(2019) Fig. 3
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Can Equation of State 
Constraints help?
linear resonant tides

● yes!
● knowledge of the EOS specifies the mode 

spectra and shapes.
● but these effects are likely to be negligible 

anyway...

nonlinear (non)resonant tides, CFS instabilities
● not clear… (e.g., Zhou+(2017))
● uncertain physics within NS core

○ damping mechanisms
○ saturation mechanism

● difficult calculations

Observations and phenomenological models may be 
the fastest way to constrain these effects...

Landry+(2019) Fig. 3
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