Multiwavelength Electromagnetic Counterparts of Gravitational Wave Events

Edo Berger (Harvard University)

Multiwavelength Electromagnetic Counterparts of Gravitational Wave Events

Edo Berger (Harvard University)

Outline

- EM counterparts: Why and what?
- GW170817 from γ-rays to radio
- EM follow-up in Observing Run 3
- The importance of BNS merger host galaxies

Soares-Santos et al. 2017, Cowperthwaite et al. 2017, Nicholl et al. 2017, Chornock et al. 2017, Margutti et al. 2017, Alexander et al. 2017, Blanchard et al. 2017, Fong et al. 2017, Villar et al. 2017, Cantiello et al. 2018, Margutti et al. 2018, Alexander et al. 2018, Villar et al. 2018, Safarzadeh et al. 2019a,b,c, Hosseinzadeh et al. 2019

Electromagnetic Counterparts: Why & What

- Precise position
- Precise distance / z
- Host / context
- Behavior of matter
- Nature of remnant

Electromagnetic Counterparts: Why & What

- Precise position
- Precise distance / z
- Host / context
- Behavior of matter
- Nature of remnant

Predicted EM emission beamed and isotropic, relativistic and non-relativistic, multi- λ .

(short GRB, kilonova, ejecta/ISM interaction, speculative components)

GW170817: GW & Y-Rays

-15°
-30°
-45°
-210°
-180°

 $A \approx 30 \text{ deg}^2$ $d \approx 25-50 \text{ Mpc}$

Abbott et al. 2017

 $M_I \approx 1.4-1.6 \text{ M}_{\odot}$ $M_2 \approx 1.2-1.4 \text{ M}_{\odot}$ $M_{tot} \approx 2.74 \text{ M}_{\odot}$

GW170817: GW & Y-Rays

 $A \approx 30 \text{ deg}^2$ $d \approx 25-50 \text{ Mpc}$ Weak Y-ray emission (~105 times lower than typical short GRBs) is difficult to uniquely interpret in isolation

Abbott et al. 2017

 $M_I \approx 1.4-1.6 M_{\odot}$ $M_2 \approx 1.2-1.4 M_{\odot}$ $M_{tot} \approx 2.74 \text{ M}_{\odot}$

Central Engine

Scenario ii: Structured Jet

Central Engine

GW170817: Optical Counterpart

Optical counterpart identified rapidly in wide-field and galaxy-targeted searches (scalable?)

A range of ejecta properties with different *r*-process nucleosynthetic yields, velocity, ejecta mass, (geometry?)

Villar, EB et al. 2017

A range of ejecta properties with different *r*-process nucleosynthetic yields, velocity, ejecta mass, (geometry?)

Low-opacity (low X_{lan}) ejecta $M_{ej} \approx 0.02 \ M_{\odot} / v_{ej} \approx 0.3c$

High-opacity (high X_{lan}) ejecta $M_{ej} \approx 0.05 \; M_{\odot} \; / \; v_{ej} \approx 0.1 \; c$

Villar, EB et al. 2017

Nicholl, EB et al. 2017

Optical spectra featureless (high velocity)

$$M_{ej} \sim 0.03~M_{\odot}$$
 / $v_{ej} \sim 0.3c$

$$X_{lan} \lesssim 10^{-5} (1 \text{ day}) / \sim 10^{-4} (2-4 \text{ days})$$

- Direct (spectroscopic) evidence for *r*-process nucleosynthesis
- $M_{ej} \times R_{BNS}$ accounts for Galactic r-process production rate
- $M_{\rm ej,lan-rich}$ / $M_{\rm ej,lan-poor} \approx R_{\rm MW,A>140}$ / $R_{\rm MW,A<140}$

- Direct (spectroscopic) evidence for *r*-process nucleosynthesis
- $M_{ej} \times R_{BNS}$ accounts for Galactic r-process production rate
- $M_{\rm ej,lan-rich}$ / $M_{\rm ej,lan-poor} \approx R_{\rm MW,A>140}$ / $R_{\rm MW,A<140}$

• Lanthanide-poor ejecta $v \approx 0.3c \Rightarrow \text{collision interface} \Rightarrow \text{NS-NS}$ (breaks ambiguity from GW data)

Nicholl, EB et al. 2017

- Direct (spectroscopic) evidence for *r*-process nucleosynthesis
- $M_{ej} \times R_{BNS}$ accounts for Galactic r-process production rate
- $M_{\rm ej,lan-rich}$ / $M_{\rm ej,lan-poor} \approx R_{\rm MW,A>140}$ / $R_{\rm MW,A<140}$

- Lanthanide-poor ejecta $v \approx 0.3c \Rightarrow$ collision interface \Rightarrow NS-NS (breaks ambiguity from GW data)

 Nicholl, EB et al. 2017
- Lanthanide-rich ejecta $v \approx 0.1c \Rightarrow$ accretion disk wind
- High lanthanide fraction ⇒ short HMNS phase (≤0.1 sec)
 - \Rightarrow final state is BH (breaks ambiguity from GW data)

GW170817: Radio/X-ray Off-Axis Jet

Radio, X-ray, and late optical emission from a single component: synchrotron emission from an off-axis structured jet

Alexander, EB et al. 2017,2018; Margutti, EB et al. 2017,2018

GW170817: Radio/X-ray Off-Axis Jet

Radio, X-ray, and late optical emission from a single component: synchrotron emission from an off-axis structured jet

Radio/X-ray observations in the next few years should reveal emission from the kilonova ejecta, providing an independent measure of the ejecta mass and velocity

Alexander, EB et al. 2017,2018; Margutti, EB et al. 2017,2018

\$190425z: BNS at ~155 Mpc, 7460 deg² (FAR: I in 70,000 years)

\$190426c: NS-BH/BNS at ~375 Mpc, 1130 deg² (FAR: I in 1.7 years)

Comparison to GW170817

Other models

Dozens of transients were announced within the localization regions, and about 10% were spectroscopically classified (all normal supernovae)

GW170817: Host Galaxy

Blanchard, EB et al. 2017

GW170817: Host Galaxy

t_{lookback} [Gyr]

GW170817: Host Galaxy

Host Galaxies: Delay Time Distribution

The SFH of galaxies correlates with stellar mass ⇒ convolution with different DTDs leads to different host galaxy stellar mass distributions

Safarzadeh & EB 2019a

Host Galaxies: Delay Time Distribution

Safarzadeh & EB 2019a

Host Galaxies: Delay Time Distribution

The SFH of galaxies correlates with stellar mass ⇒ convolution with different DTDs leads to different host galaxy stellar mass distributions

Instead of using stellar mass as a proxy, we can determine the SFH of each galaxy and infer the DTD from the combined sample

Redshifts: Delay Time Distribution

Safarzadeh, EB, et al. 2019b

Existing detectors only sensitive to $z \sim 0 \Rightarrow$ DTD degenerate with mass efficiency

Redshifts: Delay Time Distribution

Host Galaxies: Offsets/Kicks

Blanchard, EB et al. 2017

Host Galaxies: Offsets/Kicks

Blanchard, EB et al. 2017

NGC 4993 HST/ACS

Fong & EB 2015

Summary

Summary

- EM counterparts are essential for a complete interpretation of BNS/NS-BH mergers, and for access to fundamental physics, nucleosynthesis, cosmology
- The optical band remains the most promising route to rapid precise localizations
- Events like GW170817 will provide the most detailed view of mergers (but are likely to be rare)
- Host galaxies hold a key to the delay time distribution, kicks, and hence formation channels of BNS and NS-BH systems