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AC probe of the Dirac quasiparticles:
zero magnetic field case, B = 0

In addition to intraband
transitions, there are
interband transitions.
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The microwave conductivity
σxx(Ω, T ) in units e2/h vs frequency
Ω in GHz. In addition to Drude peak
(intraband) there is a constant
background (interband).
V.P. Gusynin, S.G. Sh., J.P. Carbotte, PRL 96, 256802 (2006).
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Microwave conductivity: Drude term
In weak scattering limit for energy dependent scattering rate Γ(ω)
conductivity in microwave range is given by

σxx(Ω, T ) = σ00

∞
∫

−∞

dω

(

−∂ nF (ω)

∂ω

)

2π|ω|Γ(ω)

Ω2 + 4Γ2(ω)
,

with Ω photon frequency, nF (ω) = 1/[e(ω−µ)/T + 1] and
σ00 = e2/(π2

~).
Take µ = 0 (Dirac point) and assume the weak impurity scattering
limit in Born approximation: Γ(ω) = γ00 + α|ω|, (γ00 small), we get
a cusp-like dependence

σxx(Ω, T ) ≃ πσ00

2α

[

1 − π

8α

Ω

T

]

, γ00 < Ω ≪ T .

W. Kim, F. Marsiglio, and J. P. Carbotte, PRB 70, 060505(R) (04).
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Microwave conductivity in HTSC

This cusp behavior of the
microwave conductivity σ(Ω)
is observed in a very pure
YBCO6.5 orthoII phase:
P.J. Turner et al., PRL 90, 237005 (03).

In HTSC it is explained by
W. Kim, F. Marsiglio, and J.P. Carbotte, PRB 70, 060505(R) (04).

For graphene found that for µ = 0 or
Vg = 0 the same equation
σxx(Ω, T ) ≃ πσ00

2α

[

1 − π
8α

Ω
T

]

, holds
and predict in Born limit the same
cusp like behavior.
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Vg = 0 the same equation
σxx(Ω, T ) ≃ πσ00

2α

[

1 − π
8α

Ω
T

]

, holds
and predict in Born limit the same
cusp like behavior.
Unitary limit
[see e.g. N.M.R. Peres, F. Guinea, A.H. Castro Neto, PRB 73,

125411 (06)] is, of course, different, but
HTSC shows that the cusp is not
impossible...
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In HTSC it is explained by
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For graphene found that for µ = 0 or
Vg = 0 the same equation
σxx(Ω, T ) ≃ πσ00

2α

[

1 − π
8α

Ω
T

]

, holds
and predict in Born limit the same
cusp like behavior.
Unitary limit
[see e.g. N.M.R. Peres, F. Guinea, A.H. Castro Neto, PRB 73,

125411 (06)] is, of course, different, but
HTSC shows that the cusp is not
impossible...
What happens if we vary the gate
voltage Vg?
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Tunable Drude peak

Away from the Dirac point µ = 0
µ ∝ sgnVg

√

Vg is tunable by the gate voltage as well as the width
of the Drude peak:

σxx(Ω, T ) = σ002π|µ|
Γ(µ)

Ω2 + 4Γ2(µ)
, |µ| ≫ T .

A possibility to measure the dependence Γ(ω)
by changing µ and extracting Γ(µ).
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Optical probe of the Dirac quasiparticles:
finite magnetic field case, B 6= 0
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The allowed transitions
between LLs n = 0, . . . 4.
The pair of cones at K and
K′ are combined.
Left — E0 < µ < E1;
middle — E1 < µ < E2;
right — E2 < µ < E3.
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Reσxx(Ω) in units of e2/h vs Ω.
red – µ = 50K and B = 10−4T,
black – µ = 50K, blue – µ = 510K,
green – µ = 660K all three for B = 1T.
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Optical probe: filling sweep

⇐ Dependence of Hall conductivity,
σxy (ν) = 2e2/h(1 + 2[ν/4]) at T = 0
([] denotes integer part) on the filling
factor ν which varies linearly with the
time.
The first absorption line
Ω = 294 cm−1 always appears with
full intensity or is entirely missing,
while all other lines disappear in two
steps. This indicates the Dirac nature
of quasiparticles in graphene.
⇐ Dependence of diagonal ac
conductivity, σxx(Ω) at T 6= 0 on
optical frequency Ω as the function of
ν.
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Optical conductivity sum rule
Partial optical spectral weight up to Ωm
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Area under conductivity gives
total optical spectral weight to
energy Ωm:

W (Ωm) =
∫ Ωm

0
dΩ Reσxx(Ω)
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Plateaux with the steps
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peaks in Re σxx(Ω).
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Full optical conductivity sum rule
Due to two atoms per unit cell and inter- as well as intra-band
optical transitions sum rule is different from sum over bands:

2

π

∫

∞

0

dΩ Reσxx(Ω) =
2e2

~2

∫

BZ

d2k

(2π)2
[nF (ǫ(k)) − nF (−ǫ(k))]

×
[

∂2

∂k2
α

−
(

∂ϕ(k)

∂kα

)2
]

ǫ(k), here ϕ : t
∑

δδδ

e ikδδδ ≡ ǫ(k)e iϕ(k)
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∫

BZ

d2k

(2π)2
[nF (ǫ(k)) − nF (−ǫ(k))]

×
[

∂2

∂k2
α

−
(

∂ϕ(k)

∂kα

)2
]

ǫ(k), here ϕ : t
∑

δδδ

e ikδδδ ≡ ǫ(k)e iϕ(k)

or in the linearized approximation

2

π

∫

∞

0

dΩ Re σxx(Ω) = α
e2t

~2
− e2a2

9π~4v 2
F

(

|µ|3 + π2|µ|T 2
)

, |µ| ≫ T

where t is the hopping parameter, three vectors δδδ connect nearest
neighbors, α ≈ 0.61, vF is the Fermi velocity,
a is the lattice constant.
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Optical Hall angle sum rule

The Hall response
jx(Ω) = σxy (Ω)Ey (Ω),
where, because an injected
current is jy(Ω) = σxx(Ω)Ey (Ω)
the response function tH(Ω):

jx(Ω) = tH(Ω)jy(Ω)

Optical Hall angle:

tH(Ω) ≡ tan θH(Ω) =
σxy (Ω)

σxx(Ω)
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Optical Hall angle sum rule

The Hall response
jx(Ω) = σxy (Ω)Ey (Ω),
where, because an injected
current is jy(Ω) = σxx(Ω)Ey (Ω)
the response function tH(Ω):

jx(Ω) = tH(Ω)jy(Ω)

Optical Hall angle:

tH(Ω) ≡ tan θH(Ω) =
σxy (Ω)

σxx(Ω)

obeys the sum rule

2

π

∫

∞

0

dΩRe tH(Ω) = ωH ,

where in 2D electron gas the Hall
frequency ωH coincides with a
bare cyclotron frequency,
ωH = ωc = eB

mc
.

H.D. Drew and P. Coleman, PRL 78, 1572 (97).
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Partial Hall angle sum rule
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Notice that while Re σxx(Ω)
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“Drude”-like peak.
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Area under Re tH(Ω) gives total
weight to energy Ωm:

W (Ωm) =
∫ Ωm

0
dΩ Re tH(Ω)

Observe crossover from W ∝

√
B for

low Ωm to W ∝ B for large Ωm
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Hall angle sum rule for graphene

2

π

∫

∞

0

dΩ Re tH(Ω) = ωH = − 1

4α

eB

c

ta2

~2
ρa2

= − 4

9πα

eB~v 2
F

c

µ2sgnµ

~t3
,

where t is the hopping parameter, α ≈ 0.61, vF is the Fermi
velocity, a is the lattice constant, ρ is the carrier imbalance.
Full spectral weight linear in B and ∝ ρ ∝ VG .
Interestingly, when the spectrum is gapped (as considered by many

groups): E =
√

~2v 2
F (p2

1 + p2
2) + ∆2

ρ =
1

π~2v 2
F

(µ2 − ∆2)θ(µ2 − ∆2)sgnµ

The gap ∆ can be extracted from the change in ωH obtained from
magneto-optical measurements as done by Drew in HTSC.
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New quantum Hall states, σxy = 0,±e
2/h
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Y. Zhang, et al., PRL 96, 136806 (2006).

—— 9T, —— 11.5T, —— 17.5T,
—— 25T, —— 30T, —— 37T,
—— 37T, —— 42T, —— 45T.
The observed filling factor sequence:
ν = 0 for B > 11Tesla,
ν = ±1 for B > 17Tesla.
Thus the four fold (sublattice-spin)
degeneracy of n = 0 Landau level is
totally resolved for B > 17Tesla.
The four fold degeneracy of n = 1
level is partially resolved into ν = ±4
which originates from spin splitting
leaving two fold degeneracy.
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Theoretical predictions
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V.P. Gusynin, et al., PRB 74, 195429 (2006).

Illustration of the spectrum and
the Hall conductivity in the n = 0
and n = 1 Landau levels:
(a) ∆ = 0 and EZ = 0 (no
Zeeman term).
(b) ∆ 6= 0 and EZ = 0.
(c) ∆ = 0 and EZ 6= 0.
(d) ∆ 6= 0 and EZ 6= 0.
Thickness of the lines represents
the degeneracy ×4,×2, and ×1
of the energy states;
L =

√

~v 2
F |eB|/c.

Both gap, ∆ 6= 0 and Zeeman
term, EZ 6= 0 are necessary to
explain σxy = 0,±e2/h plateaux.
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Manifestation of the gap in optics
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Transitions between LLs with an
excitonic gap ∆.
green – |µ| < ∆,
blue – µ = ∆,
black – |µ| > ∆.
For |µ| > ∆ two different lengths
for ↑ transitions =⇒ peak splits
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Summary

Optical measurements can be used to establish the presence of
the Dirac quasiparticles, anomaly of the first peak

Optical signatures of the Dirac quasiparticles already observed
in epitaxial graphite M.L. Sadowski, et al., PRL 97, 266405 (2006), but not quite,
because the sample is multilayer.
Observation in graphene APS 2007 abstract of P. Kim....

Theoretical work on FIR in bilayer D.S.L. Abergel, V.I. Fal’ko, Preprint

cond-mat/0610673.
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