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Hamiltonian H, for free electrons

l H, =—ivZV v-velocity
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Two bands: no energy gap at the K-points

A,B-sublattice space, K,K’ -valley space

Full Hamiltonian (no spin): H =H, +V
The external potential 'V is generally a 4x4 matrix.
It is proportional to unity matrix only if it varies slowly on the lattice period.

Two problems:
1. v isdisorder potential (full matrix)
2. \/ isabarrier across the graphene strip (unity matrix).




New results for 1).

a) Most general structure of V is identified

(using most general symmetries).

b) Going beyond the self-consistent Born approximation (SCBA)
(derivation and solution of RG equations).

c) derivation of a supermatrix non-linear o-model

(ultimate localization but a complicated crossover).

Symmetries of the model:

1. Time reversal (TR) symmetry (exact)
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Disorder may break all the symmetries except the time reversal one!

The most general form:

\7(r) - uO(r) + Zém,ium,i (r)’ GAm,i = Z-rlrf’Kl X TiA,B
{m,i}={x,y,z}

u,(r),u. (r) arereal independent random functions

However, averaging must restore rotation, reflection,
translation and Cg, symmetries!
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Impurities conserving the chirality.
V(ir)=-3,V(@), = Y="|=05=0

Consequence: One delocalized state exist at E=0!

Minimum metallic conductivity at the center.
(See review: Altland, Simons, Zirnbauer, Phys. Rep. (2002)

However: no reason for this symmetry!

Moreover, all weak coupling constants grow
In the process of the renormalization!

One should go beyond SCBA.



Scattering amplitudes in perturbation theory.
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Logarithmic contributions to the amplitudes!
However, other logarithmic contributions exist!
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SCBA falls: RG treatment.



Physical quantities as integrals over supervectorsy
(averaging has been performed)

()= [exp-Lp Dy,  Lpl=Llyl+L.[v]
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¥ has 16 components for the

~ density of states
RG treatment: Y =¥, +Vy
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Fast Slow
Integration over the fast field.

Reproducing the form of the Lagrangian: RG equations



Assumption: Yo Z VL By, 1

g = 7+ 271 gL =p8+125,

New coupling constants:
dg) = TN~ YL dg1 = B — 8.

Equations:
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Solution of the RG equations:

v(e) = (W 1n@) /2, o (5):70+0(9||(6)>

€0 Yo

(e) = gL(e) = 970 oo~ expl- % /7,)
IS = ILE) ™ 0T T In |2] Jeo]” ¢ =max(e, &)

&y -Is the energy at which the 1-loop approximation breaks down

All coupling constants are important. No chance for
moving to chiral disorder!



Physical quantities with the “ultraviolet” logarithmic renormalization

2
Diffusion coefficient:  |D(e) = Y Tt’-’”(e); 1 _ YoV (€)
2 Tt'r(e) 4
Density of states: _ €]
’ /(€ Th?v? ()

Conductivity:

However, this is not the end of the story: localization effects!
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Non-linear supermatrix O -model
for describing localization effects

General scheme: following “Supersymmetry in disorder
and chaos™, K.B. Efetov, Cambridge University Press, (1997)

/O exp ]) DQ  For any correlation function O

1= fexp (_F [QD DO Due to supersymmetry

For graphene: Q are 16x16 supermatrices
(unity in the sublattice space), Q°=1
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Free energy functional F
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All the constants should be taken from the solution of
the RG equations!
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1) If only diagonal disorder(y, ) is present :

F = %ég) str | [D(g)(VQ)2 + ZiwAQ]dr

Q=CQT0T, é:iT;{K,(@ﬂAR@(Tfh@]lg— h@19)

The symmetry of Q corresponds to 2 replicas of the
symplectic ensemble. == Antilocalization!

The symplectic symmetry was first noticed by
Suzuura and Ando (2002)

However, the terms with £ break the symmetry
and the ensemble becomes orthogonal!

At large distances: [Q = 1xx @ O,

-1s 8x8 supermatrix of the orthogonal symmetry:
localization! 13



Perturbation theory: first order gives
the weak localization correction.
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Qualitative picture (from Aleiner and Efetov (2006)).

-

o7 ) Weak localization, Eq. (24)
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FIG. 2: Schematic dependence, (1), fot the undoped
graphene and for 7 L T.
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How to make a quantum dot in graphene?
Silvestrov and Efetov (2007)

Peculiarity of graphene with respect to conventional 2D
electron gases: One barrier is sufficient!

Avoiding the reflectionless penetration (Klein paradox)

through the barrier: making a strip with a barrier across It.

Transversal quantization removes the problem of
the confinement!
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Real space

Applied  __ ___________
electrostatic E I /\
potential / \

Sufficient to make the quantum dot!

Quasiclassical treatment
complemented by numerics.
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Conductance as a function of the

energy (gate voltage)
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FIG. 1: Upper curve: Conductance of the graphene quan-
tum dot as a function of the Fermi energy for the metallic
armchair edges for L = 4£, Eq. (@). The lower curve: the
contribution to the conductance from the transmission chan-
nels with py = +7h/L. All calculations are carried out for
the zero temperature, T = 0.
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FIG. 2: Examples of trajectories described in the text drawn
on the =, p, plane {arbitrary units). Solid lines show the tra-
jectories with & < 0 either bouncing inside the barrier., or
reflected by it from the left /right. Tunnelling events between
the bounded and unbounded trajectories are shown schemat-
ically (t). Thick dashed lines show the trajectories with = > 0
either transmitted for |py| < £/¢ (open channels) or reflected
for |py| = /e (closed channels).

Fabrication of quantum dots in graphene:
essential detail for quantum computer!
Experiments are being carried out!
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