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Outlook:

e What’s Stat. Mech. theory of dense Granular Media (GM)
and why Edwards introduced it

e Our current understanding of such a theory (from experiments
and models)

e What we learn from it about the physics of GM (Phase Diagram,
Equation of State, ...)

See review by Richard, Nicodemi, Delannay, Ribiere, Bideau, Nature Materials 4 121 (2005),
February 2005 Nat. Mat. Highlight “Compaction in a sand box”



[J Granular Media (GM)

Examples of granular media are: powders, sands, rice, ...
e they are dissipative, non-thermal systems:

d>1uym = mgd >>kgT

Is Statistical Mechanics suited for dense GM 7 (Edwards 1989)

e Macroscopic properties of GM at rest are characterized by
a few control parameters.

e As much as in thermal systems, macrostates correspond to
many microstates, i.e., mechanically stable configurations.



[ Experiments in Chicago (vl et a1 190s)

e Experimental set-up for
tapping dynamics:
['=(peak acceler.)/gravity
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(see also exp.s by D’Anna et al. 2001; Bideau et al. 2002; “flow taps” by Swinney et al. 2005)



[] Edwards’ approach to GM

e Granular media are found, at rest, in mechanically stable microstates.
In Edwards approach to GM one uses the “standard machinery” of Stat.
Mech. where averages are only over mechanically stable states.

e E.g.. in the canonical ensemble (given average energy) the probability,
P,, of a microstate r with energy, F,, is:

a) P, oc e PeonfErif r is “mechanically stable”;
b) else P, = 0.

Teons = ﬁ(;}l ;e configurational temp.

6 __0In{)
conf — "OF
Q)(F) is the number of “mechanically stable states” with E.

e The system at rest has: Ty, =0  and Tl = B(M F £ 0



[1 Test of the Stat. Mech. scenario

We have to show that for any observable Q:

a) “Thermodynamics”
TIME AVERAGES

r, —- -
TVA VA S Y0

() is not “history” dependent; for instance, for a given energy, e,

there is only one value Q(e).

b) “Statistical Mechanics”
ENSEMBLE AVERAGES

P e eonsbr — <Q> = ZT QP

Time and Ensemble Averages must coincide: Q(e) = (Q)(e)




[ Schematic Models and Dynamics

(Nicodemi,Coniglio,Herrmann 1997; ...)

Grains —

e Hard Spheres on a cubic lattice:

H = HHC + gzzmlzl
Hard Core + Gravity

e Monte Carlo taps dynamics:

draw a lattice —
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shaking “oft” < Ty = 0
shaking “on” < Tpup =11 > 0

Tap amplitude: Tt

Tap duration: Tg
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[1 Stat. Mech. scenario: monodisperse HS

24 ‘ (Coniglio, Fierro, Nicodemi 2001)
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L] Connection of 7., and It
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Ap? = X = Xo— [ ACl—gQ — ¢(X), where ¢ = vol. fraction, X = “compactivity”.
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Use the equilibrium FDR:

oL

-0 ﬁCOnf

— AE?

to evaluate T,,,;(E) by integration

6(3072, f— ﬁcon f f AE2

: E( conf) and TCOnf(TF7 7_0)

(Edwards 1989; Nagel et al. 1995; Coniglio&Nicodemi 2000; Swinney et al. 2005)



[1] MD simulations of “flow taps”

In our MD simulations of grains in a 3D box pulsed by a fluid flow, two
grains (with diameters d, posit.s r;, r;, vel.s v;, v; and angular vel.s w;, w;)
interact when they overlap via normal and tangential forces (Silbert et al. 2001):
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Fnij — (Fj) (kndzjnij — f}/nmredvnij) %’
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where k¢, v, = elastic, viscoel. const.s, me¢r = mym;/(m; +m;), « = 0 and the rate of change

of the tangential displacement wy,; is: duy,,/dt = v, — (uy,, -vij)rij/rij
N
Grain ¢, under gravity, interacts

YA,

with the fluid via a viscus force:

AN,

F; = _(1—7<1>)£ (Vi = Vfiia) + mig :
Fluid
where @ is the local packing fraction reservoir V>O
(P. Sénchez et al. 2004, C. Crowe 1998). V=0 for a time T(



[] Stat. Mech. scenario in MD “flow taps”

(Pica Ciamarra, Coniglio, Nicodemi 2005)
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e The volume fraction, ¢, is a Vol. fract., ¢

good thermodynamic parameter;
The flow velocity, V, is not.



[1 A mean field theory (ruzia et a. 2004)

e The partition function: | / — S:T e_ﬁcoan(T) . H?“

where II, = 1 if r is a “stable state”; else II, = 0.

e For hard spheres on a lattice II, has a tractable expression:
I, = limg oo exp{—K >, Heconr(z)} where Hoonr(z) =), Oni(2),10m; (2—1),00m,(2—2),0

H=Huc({ni}) +mg>_ ni(z)z and n;(z) = 0,1 if site ¢ at hight z is empty, filled by a grain

e For hard spheres on a random lattice a mean field analytic calculation
of Z is possible (“Bethe approx.” or Mézard&Parisi’s “cavity method”).
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Dl(])ﬂquation of State and Phase Diagram
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e T, : Fluid to Crystal transition line
o T'i: Supercooled Fluid to Glass transition (metastable phases)

e T'h: dynamical crossover line



[] Bmary mixture
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e ¢ is not the only thermod. parameter; h,

e 1y and hy are enough = two configurational temperatures cxist:
J0ln Q(El, EQ) J0ln Q(El, EQ)
b= By =
(9E1 8E2




[] Conclusions

The picture has just begun to be assessed:

e Simple models, and some exp.s, support Edwards’ approach to dense GM,
at least as a first good approx. (Edwards et al.; Kurchan et al.; Brey et al.; Dean
et al.; Nagel et al.; Bideau et al.; D’Anna; Swinney et al.; ...);

e A comprehensive Stat. Mech. description of “thermodynamic” and dy-
namical properties of dense GM is emerging;

e A unified framework appears of “jamming”in glasses and granular media

(see Liu&Nagel “jamming phase diagram”).

Many relevant open questions ahead:

e [s a “thermodynamic” description of dense GM possible? For instance, is
¢ (or e) found to be a good thermod. parameter in experiments?

e Are Stat. Mech. approaches ground 7 (general validity? basic justi-
fications? how to predict a priori the number of independent param.s
needed? ...)

e Need for deeper tests of theory: experimental phase diagram, eq. of state,
fluct.-dis. relations, mix/segregation transitions, ...



