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Plan of talk

• Introduction

• Vibrated sand: review of numerical results

• Statistics of bridge geometries

• Granular compaction - sand on random graphs

• Shape matters in granular compaction
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Introduction

Sand:athermal complexsystem withhysteresisandmetastability

it avalanches

(AM and G C Barker, EPL 1994; AM, J M Luck and R J Needs, PRE 1996;P Biswas et
al PRE 1998; AM and G C Barker PRE 1996; AM and G C Barker EPL 2001)
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Vibrated sand: review of (some) numerical results

(AM and G C Barker, PRL 1991: G C Barker and AM, PRA 1992, PRE 1993; G C Barker, AM
and MJ Grimson PRL 1993)

Algorithm : Hybrid Monte Carloscheme withstochasticityandcooperativity

• Dilation: free volume introduced homogeneously in vertical direction,stochasticdisplace-
ments in axial direction.

• Quench: packing recompressed byhybrid Monte Carlo, which allowscooperativestructures
to form.
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Plot of volume fraction vs shake intensity

Note rise in volume fraction over 0.58 -collective effects!

Plot of coordination no. vs shake intensity

Coordination nos. about 4.5 - ’frictional packings’!cf. MD simulations of Silbert et al PRE
2002
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Contact networks: how they deform or break!

Low vibrational intensities cause contact networks todeform:
High vibrational intensities cause contact networks tobreak!

(see also T A J Duke, G C Barker and AM, EPL 1990)
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Bridge collapse - the mechanism for compaction near jamming?

• At
low intensities, contact networks deform� a grain’s neighbours stay (almost) the same...

• ..and collapse onto each other causing displacementanticorrelations!

• A major mechanism for compaction near jamming isbridge collapse; ’sharper’ bridges
(which trap more void space) collapse into ’flatter’ ones.
( G C Barker and AM, PRE 1993)
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What about horizontal displacement correlations?

The void space at different amplitudes

Note that the void space gets connected at large amplitudes!
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Is there spontaneous crystallisation?

Spontaneous crystallisationcan occur bynucleationnear the jamming limit for a specific
range of intensities

AM and G C Barker, J Phys. Cond. Mat. 2000
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Note the difference in ordering!
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Statistics of bridge geometries

AM, J M Luck and G C Barker, JSTAT 2004.

Bridges can be classified assimple...
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...orcomplex
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• Linearbridges are exponentially distributed (P (n) ∼ exp(−an) and look likeself-avoiding
walkswith d between2 and3.

• Complexbridges dominate aftern ≈ 8, and look like3d critical percolation clusters:
P (n) ∼ n−τ with τ ∼ 2.

• Asymptotically, long linear bridges aredomes, with flat bases.

• Linear bridges growdiffusively in the vertical, andsuperdiffusivelyin the horizontal direc-
tions.

cf. experiments of To et al PRL 2001
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Distributions of base extensions of linear bridges (through which any forces would be
transmitted in the normal direction)...

... resemble experimental distributions of normal forces in shaken granular media!

Erikson et al PRE 2002.

Speculate: Linear bridges≡ force chains?
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Granular compaction: sand on random graphs

J M Berg and AM, EPL 2001, PRE 2002.

The model

• Putgrains/spins at vertices ofrandom graphs -� full disorder with finite connectiv-
ity!

• Use 3-spin modelV = −ρN = −
∑

i<j<k CijkSiSjSk with Cijk = 1(0) denoting pres-
ence/absence of plaquette connecting sitesi, j, k andS = ±1 grain orientations

• Get fluctuating local connectivities

• Need to minimiseV leads to frustration!
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Slow dynamics and metastability emerge...

• Globalground state+ + + but locally, −− +,− + −, + −− also good!

• Competition between global and localvoid minimisation leads toslow dynamics.

• two spin flips required to take plaquette from one metastablestate to another - ’energy’
barrier crossed!
cf. bridge collapse� granular compaction! (AM and G C Barker, PRL 1991)
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Modelling tapping at intensity Γ

(thermal tapping as inG C Barker and AM, PRA 1992)

• Dilation �

grain i flipped w. prob.1 if si antiparallelto local fieldhi,
w. prob.exp(−hi/Γ) if parallel,
w. prob. 0.5 if hi = 0 - rattlers!

• Quenchtill blocked state reached

� Sites with largehi are highly constrained� thermaltapping!
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Results

The Compaction curve

• fast dynamicsuntil single-particle relaxation threshold

• slow dynamicswith logarithmic relaxation

• systemwidedensity fluctuations
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Cascades

• Density fluctuations analysed (followingNowak et al, PRE 1998)
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• � a cascademechanism of compaction!

• grains release other grains, so correlations over all scales!
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Amplitude cycling

• Grains tapped at amplitudeΓ for a timeτ , then atΓ + δΓ and so on...

• Control parameterδΓ/τ - measure of’equilibration’

• Most models predict ’crystallisation’ (not realised experimentally, cf Nowak et al PRE
1998....)
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...with pinning of immobile grains, our modeljams!!!
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Shape matters in granular compaction

Simplest model - shaking a box of sand
P F Stadler, AM and J M Luck, EPL 2000.

• NxM sites in a box: two possible orientations(σn = ±1) of each grain

∆ h

∆H

• Grains canfly, fall or flip

• The deeper the grain in the box, the less likely it is to flip!
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• Getfluidised, intermediateand’glassy’ regimes

• ...but ’glassy’ regime isn’treally glassy - no intergrain interactions...� modify model!
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Introduce interactions based on orientation of grains in acolumnof N grains:
AM and J M Luck, JPA 2003, EPJB 2004.

• Each disordered grain leaves avoid spaceε on the site it occupies

• (Ir)rational ε � (ir)regular grains : the effect of shape

• Transition probabilityw(σn = ± → σn = ∓) = exp(−n/ξdyn ∓ hn/Γ)

• ξdyn dynamical length,Γ vibration intensity

• Ordering field hn = ε m−
n − m+

n

with m+
n no. of+ grains above grainn

andm−
n no. of− grains above grainn

• hn is just excess void space!see e.g. Brown and Richards 1969

• Transition from order to disorder for grainn hindered by no. of voids above it.
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Ground states

• For irrationalε, all hn are non-zero
� Unique quasiperiodic ground state for irregular grains!

• For rationalε = p/q, hn can vanish!
� perfect packing whenn multiple of periodp + q.
� Highly degenerate ground states for regular grains!

• Simple example for regular grains:
Forε = 1/2, dynamics chooses+ −− and− + − as units of perfect packing
� two ‘half’ voids from each− grain filled by+ grain.
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Zero-temperature dynamics - irregular grains, irrational ε

• Dynamical ruleσn = sign hn

• Irrational ground stateoptimal, imperfect andquickly retrieved

• Ordered layer grows ballisticallyL(t) ≈ V (ε) t, for L � ξdyn

• For L(t) ∼ ξdyn, logarithmic slowing downretrieved
� L(t) ≈ ξdyn ln t

Preview of rationals:Perfect ground states, irretrievably lost!



Slide 26

Zero-temperature dynamics - irregular grains, irrational ε

• Dynamical ruleσn = sign hn

• Irrational ground stateoptimal, imperfect andquickly retrieved

• Ordered layer grows ballisticallyL(t) ≈ V (ε) t, for L � ξdyn

• For L(t) ∼ ξdyn, logarithmic slowing downretrieved
� L(t) ≈ ξdyn ln t

Preview of rationals:Perfect ground states, irretrievably lost!



Slide 27

Zero-temperature dynamics - regular grains, rationalε

• Local fieldhn may vanish inσn = sign hn

• Rational ground stateperfect and (all) too easily lost!

• Getstochastic dynamics atzero temperature
� system relaxes tonon-trivial steady state !!!

• Unbounded fluctuationsof hn � Density fluctuations seen in experiments ofNagel et al,
Nowak et al, 1992 -!

• KEY RESULT:Anomalous roughening lawW 2
n = 〈h2

n〉 ≈ An2/3
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� Grain displacementsfully anticorrelated !

....reminiscent of anticorrelationsin longitudinal displacement-displacement correla-
tions in the jamming limit...
G C Barker and AM Phys Rev A 1992
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Ground state entropy for regular grains, rational ε

• Extremely rugged landscape ofmicroscopicentropy (as it should be for compaction near
jamming)

• Some configurations clearly visited far more often than others! � ground states!

• Macroscopic entropy agrees withEdwards’ flatnesshypothesis!!
(Edwards 1989)
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Intermittency in low-temperature dynamics

Boundary Layer PositionN (t), for a temperatureΓ = 0.003

• Ordering length〈N〉 diverges at lowT - excitations more and more rare -
〈N〉 ∼ 1/(Γ| ln Γ|)

• Finite-temperature equivalent of ‘zero-temperature’ length ξdyn which di-
vides an ordered boundary layer from a lower (bulk) disordered region.

• Seen in experiments ofClement et al, 2003


