Temperature of dense granular systems

By:

Lou Kondic, NJIT

with

Robert P. Behringer, Duke
also contributions by

Oleh Baran, Exxon

Corey O'Hern, Yale

Ning Xu, Yale

Presented at:

Granular Workshop, KITP, June 2005

supported by NASA



Main goals

Understand the dynamics of dense granular sys-
tems

Reconsider the concept of granular tempera-
ture

Work towards out-of-equilibrium statistical the-
ory for these systems

Techniques

Discrete element simulations (mostly soft spheres
in 2D)

Overview

e \Velocity profiles for sheared granular systems:
conditions for uniform shear

e Elasticity and generalized granular tempera-
ture

e Flow of energy and relation to generalized
temperature



Simulations
Discrete element techniques

Linear force model with damping in normal and
tangential directions - frictional particles, in-
elastic collisions, rotational degrees of freedom

Rough shearing walls

Parameters chosen appropriately for (soft) pho-
toelastic disks, (e.g. Howell and Behringer, PRL

('99) )
Monodisperse and (10%) polydisperse particles

Consider first sheared systems with slowly vary-
ing volume fraction
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Plain Couette Flow

~volume fraction: 63% - 94%
‘variable size (range 0.1)
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Low volume fractions: Gas-like regime

No significant difference between monodisperse
and polydisperse materials

System dilated next to the shearing wall
Rate-independent system behavior

Shearing band formation similarly as in radial
Couette geometry (Howell and Behringer, PRL
'99)

Related works

Jenkins, Richman, Phys. Fluids '85
Walton, Braun, J. Rheol., '86
Campbell, Annu. Rev. Fluid Mech. 90
Hopkins, Louge, Phys. Fluids '91
Savage, JFM '98

Moon etal PRE '01 ...

Digression: intermediate volume fractions sim-
ulations in 3D: work with Oleh Baran



3D simulations of polydisperse, frictional, spher-
ical particles including rotations
intermediate volume fractions 40 — 50 %

Concentrate on influence of boundaries



rough shearing wall, inelastic, frictional side
walls

v(y)lv
v. fraction (%)

y bin number

smooth, but inelastic, frictional shearing wall,
inelastic, frictional side walls
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Conclude: Rough (glued particles) shearing wall
necessary to induce significant shear, except

if...



Side walls are smooth:
Elastic, frictionless side walls, no glued parti-

cles

V =0.1 rad/sec

v(y)lv
v.fraction (%)

2 4 6 8 10

y bin number

Shear can be induced without mechanically rough
walls if side walls are not an obstacle, and driv-
ing wall is sufficiently frictional
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However, one may need to wait for very long
time!



Waiting time depends on the how close one is
to ‘critical’ friction
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More details, including effects of vibrations and
the stresses in this system in Baran & Kondic,
Phys. Fluids, to appear July’'05.



High volume fractions

From gas-like to solid-like behavior: jamming
Formation of force chains

Large stress fluctuations both in space and
time

Rate-dependent behavior for large volume frac-
tions (stress does not scale with square of the
shear rate)

Significant differences between monodisperse
and polydisperse systems:

Fracture occurs for monodisperse systems
Monodisperse systems are compressed easier
(crystallization) — large difference in the stored
elastic energy compared to polydisperse sys-
tems

Concentrate on polydisperse systems next



High volume fractions - Velocity profiles:

From exponential to linear velocity profiles as
volume fraction is increased

However, this is not the whole story...

Even for high vol. fractions, both linear and
shear-banding velocity profiles can be found
Main result: As shearing velocity increases and
becomes comparable to the speed of shear waves
in the system, transition from linear to shear-
banded velocity profiles occurs

(Xu, O'Hern & Kondic, PRL '05)

Important issues:

influence of dissipation, in particular friction on
the dynamics

Stability of the nonlinear profiles

Concentrate next on relevant energies in slowly
sheared systems (approx. linear velocity pro-
files)



Energy balance for sheared granular systems




Elastic energy for dense slowly sheared granu-
lar systems is much larger than kinetic energy

Kinetic granular temperature 73 does not seem
to be energetically relevant for dense, slowly
sheared granular systems

Can we formulate a relevant temperature based
on the involved energies?

Can we relate this ‘relevant’ temperature to:

e ‘effective’ temperature used in supercooled
glass-forming liquids, colloids, foams

(mostly based on mode-coupling theory)
Berthier and Barrat, J. Chem. Phys. '02

e fluctuation-dissipation temperatures

Ono et al PRL '02

e Edwards temperature resulting from the en-
tropy associated with the number of jammed
configurations

Blumenfeld and Edwards, PRL '03

Edwards and Grinev, Gran. Matter '03



Consider this temperature

m k
ngTk—I—Te:E<v>2—|—§<x>2

e r iS compression of a particle

e k is the force constant

< ... > stands for the space and time average
over fluctuating component

Note analogy to harmonic oscillator

Definitions

T =, [tm@)?) + (m(@)?) + 5 m(dpe)?)

with
(u'v') = (uv) — (u)(v)

Elastic energy and temperature require more
care due to multiple collisions:



1 k 2
el — N Ef y: y: y: j,C]
tN < p—1j=1c=1
L L 1 Ny np Ty
(Bey) = Lne(a)? = Tne |[—=— 3 3 3 ;.
2 Nemne ;. =1 j=1 =1
k k
T, = Jne(6e®) = Lne((@)je—(@))%) = Beg—(Be)

x;. average compression per particle

Note: all quantities are calculated locally



Comparison of various temperatures




10° e polydisperse particles
vel. shear 0.1

-7 B \/ ]7 _ | | | |
10 0.7 0.8 0.9

v-frac

Note smooth transition between kinetic domi-
nated to elastic dominated regime as vol. frac-
tion is increased



Temperature for fixed volume fractions

2 70 % 2 82 %
107 10°F
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Large fluctuations at vol. frac. at which dom-
inant energy changes from Kkinetic to elastic



Relation to Fluctuation-Dissipation Thm

Discuss how well Ty satisfies the following rela-
tion from equilibrium statistical mechanics (ex-
ample of fluctuation-dissipation theorem)

dU U2
dT T2
U2 =< U? > — < U >2; energy fluctuations

Compute T;, defined by
2 _ SU?
2=
dU /dT
and check if Ty, = T}

First, find the analogy of heat capacity
co = dU/dTy
To ensure that steady-state has been reached,

the simulations are performed for fixed volume
fractions
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Heat capacity approximately constant for low
volume fractions for many decades of relevant
energies

Heat capacity not a constant for large volume
fractions

Instead, ¢, ~ T ~ /U for not too slow shearing
(amming? )

For slow shear, we observe logarithmic depen-
dence of both U and 7' on v

(logarithmic dependence also seen in experi-
ments by Behringer and Hartley, Nature '03 )
(cy ~ constant for slow shear)

Now we use this ¢, to check for agreement with
FDT
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Comments

Generalized granular temperature satisfies sur-
prisingly well an equilibrium FD relation
There is no equipartition of energy; ratio of
relevant temperatures changes depending on
volume fraction and on shearing rate
Although granular system is far from equilib-
rium, it appears to make sense to apply equi-
librium concepts

Kondic & Behringer, Europhys. Lett. (2004)
Does the generalized temperature govern the
energy (‘heat’) flow?

Consider:

e Elastic system particles

e Symmetric shear

e (One) wall heated by a pulse of energy

Observe heat flow from hot to cold



Plot energy in the middle of the domain (far
away from the sources and sinks of energy)
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Heat flows from high to low temperatures

However, more work is needed to understand
all relevant issues in particular regarding the
nature of system response to excitations



Parametric dependence: Shearing velocity
Typical shear V = 1:
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Note lack of scaling with V for high v



Parametric dependence: Friction
Typical friction p;, = 0.5:
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Faster transition to

elastic regime for small pp



Parametric dependence: Elasticity
Typical e = 0.5:
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Weak effect



Parametric dependence: Stiffness
Typical kf — 4.0d3:
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Larger elastic temperature for stiff particles
(more details in Kondic& Behringer, Powders
& Grains '05 ).



Comments, questions and open issues

There is a well defined transition between Ki-
netic and elastic - dominated regimes

Details of this transition depend only weakly
on material parameters and imposed shear
Proposed generalized temperature satisfies rea-
sonably well (equilibrium) FD theorem

TO DO list

Understand connection of generalized temper-
ature to other temperature concepts

Verify/discuss other statistical relations
Understand importance of dissipation
Relevance of spatial inhomogeneities
Anisotropy

Time dependence of computed temperatures
and energies



Discrete element techniques

Linear force model with damping in normal and
tangential directions

F; = [k(d —r; ;) — wm(vi;-n)|n
Tangential force
F; . = min <_'78mvrela plFi 5 n|) S

F% = man (-%’ﬁwrela plFq g n|) S
Vpel = Vi j -8+ (ri€2; + 7;€25)
s:s_Ln

vs tangential damping

. Coulomb coefficient



