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Population oscillates (Rabi oscillations), energy saturates
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Dynamic Localization in Quantum Dots

Infinite system: the case of small perturbation

H = Ho +Vcos(wt)

13 V<<d
A
E. Probability to fall in resonance  (V/0)
hw v
'S \ Number of allowed active initial levels (GY3)

Saturation energy of a resonant pair #0

For t >t*=n/d the total energy of an infinite system saturates at
E* ~ V (w/3)2

Wilkinson, Austin, 1992

Infinite system: the case of large perturbation

/

................. o
r=Vv2/6>9
Teff
............... ). A
(V]
7 Many levels involved &
,,,,, semiclassical picture
{3
B T Spectrum is continuous to Diffusion in the energy
the first approximation: i
resonance does not play any space:

I
roe - w; 1> 1/T

Total energy: D=I2/T » Ta?

E = const + Ie[f (€) _9(8)]%5 O T?“‘f

T24=Dt

dE/dt = D/d = const
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Dynamic localization

Tett” Continues Dyrjam.ic
.~ forever? localization

Grempel, Fishman, Prange, 1982
G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, 1979

» time
V()¢

I time

. t*
—_— time t = infinity at =0
memory of quantization

How general is this effect? How to describe analytically?

Kicked rotor: Grempe Fspman

~ a 2 0 & G. Casati, B. V. Chirikov,

H (t) - _ 692 +V(9) Z 5(t _ nT) J. Ford, anfgl;.gM. |zrailev,
n=-oco

w[g?) (6) = eim@ ’ Er(nO) - m2

V(e) = COS(G) me’ =V (6 m’,m+1 + 6 m’,m-1 )

only neighboring states are connected by perturbation

f@)yo i o(t-nT)= i cos(wnt)

n=—c n=—c

all harmonics have the same amplitude

Can the results on dynamic localization in this system be
extended to a generic chaotic system (random matrix)???

No analytic results for [ >> &
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Perturbation by periodic 3-function (kicks) H = H o+ Vf (t);

I All sites are directly connected I f() =H:Z_m5(t‘2m’w) =H:Z_w003(m)

=1 wl

Kicked rotor :
me’ =V (6 m’,m+1 + 6 m’,m-1 )

— N —

f— S/ N\ J—

— \(l = ~_ (x)l = | only neighboring orbitals

e — _ —_— -— .

= — T~ — are connected: remote

— — V| S T——— sites are out of resonance

— [— _— - dynamic localization
< s—1 s s+1

2
Kicked random matrix : |—¥|II ' EI: ConSt
3

All orbitals are connected:
resonance between
remore orbitals on

arbitrary remote sites is
possible

Random matrix with almost harmonic perturbation

H= Ho+Vf(t); f(t)= Z Ancos(wt+¢,)

GOE GOE
Few harmonics are relevant: A, <i
%
=— | = n
7\\\ m —
== V\u\“ — Few sites are connected
s-1 s
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Weak dynamic localization

Basko, Skvortsov,

, O i
vedna | =W + — / O,F () DS (t = £) Cy_eyal€.—E) dE

J0

Classical Quantum interference correction
diffusion
Altshuler, Aronov, . ¢ yd
Khmelnitskii, 1082 diffuson: Dy(t 1) = 6(t —t') exp [—l / [t +0/2) — f(t: — 4,_‘;‘2]:9,//;}
Yudson, Kanzieper, g
V.E.K. 2001

/ ' I e Ye 2
cooperon: Celny) ) =0(n—n') exp {77/ [flt+1/2) — f(t —11/2)] f[/,‘[:|
2 o

Vavilov, Aleiner,
Dephasing factors
Harmonic perturbation with high

frequency: w>>I>>3 Ye(t - &/2) = sin?[w(t - &/2)]
No-dephasing windows near D ‘[ D
= 0 —
w(t-§,/2)=mn w _W()g —[
o Vtog
make the main contribution

to= 7T /(267)

vamy  ftHt) =f-t+1t)
f(t) = Z Ancos( Nwt + ¢n)
Average dephasing rate y, versus time:

P (AN

Quasi-1d orthogonal: Quasi-1d unitary:
W~ -(t / t¥)1/2 dW~ - (t /t¥)

Monochromatic perturbation: T-symmetry always —
a very special case
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Incommensurate periods

AZsn®(wt+¢,)

dephasing rate:

Number theory game seen
in mesoscopic physics
X.B.Wang, V.E.K. 2001

Almost-no-dephasing points contribute:

d-dimensional weak

W(t) _WO _ _w2lj' r dtl Anderson localization
-

d Basko,Skvortsov, VEK, 2003;
(r tl) Numerics for kicked rotor: Casati, Guarneri,

Shepelyanskii, 1989

A glance at the reality

GaAs dot:

size L~1um

mean level spacing o ~1ueV
Thouless energy E;, ~100-1000 peV
dephasing time ~ t, ~1-10ns

Microwave field:

V~ several peV (field ~ several 100 V/m)
ficw ~10-100 peV (~10" Hz)

Dynamic localization:

t. ~10ns, E . ~ /Dt ~100-1000 eV ~1-10K
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Conclusions

* A quantum-mechanical system under a time-
dependent perturbation may be subject to dynamic
localization in energy space.

* It depends both on the model for the unperturbed
system and the perturbation.

. For a chaotic system described by RMT the character
of dynamic localization depends entirely on the time
dependence of perturbation.

*  For a periodic d—function perturbation there is NO
dynamic localization in RMT.

Conclusions

*  For a periodic perturbation with few harmonics weak
dynamic localization is similar to quasi-1d Anderson
localization of orthogonal or unitary symmetry class
depending on the symmetry of time dependence with
respecttot —-t (up to an arbitrary shift in time)

e For dincommensurate harmonics weak dynamic
localization is similar to the Anderson localization in

a d-dimensional system.

. Dynamic localization seems to be observable in
guantum dots under ac excitation (this is another story)
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What everybody knows...

- H=H,+Vcosut
* (Quasi)continuous
spectrum

» Absorption and emission
of quanta o -
random walk up and
down

« Diffusive evolution of the
electron distribution
function

how

What some people know...

Kicked rotor:
A 02 © K
H{)=- 307 +V(9)n:Zw5(t -nT)
w(O) (6) = eim@ Er(nO) - m2

Dynamic localization in <H“ (t)>
the energy space:

after some time the rotor

stops absorbing

t
>
(G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, 1979)

Dr. Vladimir Kravtsov, KITP & ICTP, Trieste (KITP Glassy States Program 4/24/03)

8



Dynamic Localization in Quantum Dots

Historical developments

1. Quantum interference — analogous to the Anderson
localization (Fishman, Grempel, and Prange, 1982)

2. Incommensurate periods T,, T,, T; — 3D localization
(Casati, Guarneri, Shepelyansky, 1989)

3. Particle in a box: just (0) =y (2mr) =0 instead of

the periodic /(0) = (2mr) — no localization
(Hu, Li, Liu, Gu, 1999)

4. Mapping to a quasi-1d o-model (Altland, Zirbauer, 1996)

What do these observations mean
and how general are they?

Spatial localization

: mean_free path
Quantum correction to \&m P 4
the diffusion coefficient p-p ~ Do dk
of electrons in disorder ]V ‘!:Dokz +1/t,

density of states

) ) dephasing
Change variables D k” =1/1: time
t
17 Dyt
D-D, ~ __I YT
v T (Dot)

Localization: d=1: L, ~vD,~I
d=2: L, ~lexp(vD,) (?)
d =3: no localization in weak disorder
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Chaotic systems
Ballistic systems: Diffusive systems:
i
Tog =L/Ve ergodictime  Tgq = L?/D

RMT is valid at low energies:
E<<Ep, =n/T4, (Thouless energy)

Random matrix theory

0 -4 +V real symmetric
H (t) H 0 V(p(t) N x N Gaussian
A A random matrices

with statistically independent elements

mean -
level spacing 1\/ 6‘\Density of states of H,

at the center
/ \ E

—oNO /T ONS /1T

Inthe end let N — o0
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Technicalities

Time-dependent RMT

y

Keldysh non-equilibrium formalism

/N

Diagrammatic Nonlinear
technique o-model

N

Perturbative (loop) expansion

Zero order (diffusion)

r=(Vi?)/8 — one photon absorption rate
(measure of perturbation strength)

Long-time, period-averaged dynamics:

v 92 0. 4 time-dependent
e Doz (B =0 electron distribution
a (Wigner variables)

D =T (de/dt)® — energy diffusion coefficient

0 D
W, Ea_tIE f(E,t)dE =5 — energy
absorption rate
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One-loop correction

W(t) = % +%j¢(t) @t -1)C,,,(T,-T)dr

-~ — —— —
large small (?) correction
zero-order

Cooperon keeps track of the quantum interference:

an C
C.(1,7,) =6(r, ~1,) eXpC [ [t +7/2) = (t -7/ D" dr
872 E

—

—

dephasing rate

Periodic perturbation

o= Acosnat=9,) W, = r;; 5 A

C(1,,1,) = eXpﬁ— r(r, _Tz)iszgnz(na _¢H)E

. + kit
If ¢, =N¢ the exponent can vanish at t, = ¢

No-dephasing points give a large negative
contribution to the integral:

W(t) -W, ~ Tt
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Time-reversal symmetry
¢n:n¢ < (p(t_to):(p(_t_to)

Average dephasing rate versus time:

Py (AN

T-symmetry: yes T-symmetry: no

Monochromatic perturbation: T-symmetry always —
a very special case

Two loops

There is a contribution from diffusons:
t1

C
D, (t,,t,) =6(t, —t,) exp[+J’r [p(t+T/2)—@(t—1/2)]° dtC
81 £

For a periodic perturbation:
O = . O
D, (t,,t,) =expr 2r (t,-t,)S A’sin® nwr
1142 H’ 17 L2 nzzl B

No-dephasing points are always present,
regardless of the time-reversal symmetry...

w?d

W) ~Wo =~ 2477
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Incommensurate periods
f(t)= iA" cos(w,t—¢,) ye = Zsinz(cm“d)nw

dephasing rate:

Phase
relationships
do not matter
that much

Almost-no-dephasing points contribute:

t
I dtl d-dimensional weak

W(t) _Wo - _wzﬂr Anderson localization
ry (rtl)d

Conclusions...

1. A gquantum-mechanical system under a time-
dependent perturbation may be subject to
dynamic localization in energy space.

2. It depends both on the model for the
unperturbed system and the perturbation.

3. We have studied one-loop correction to the
usual Fermi-Golden-Rule dissipation rate for a
chaotic system described by RMT
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...conclusions

4. For a perturbation with d incommensurate
frequencies the correction can grow arbitrarily
with time if d=1,2 (analogously to spatial
localization in d-dimensional disorder)

5. For commensurate frequencies phase
relationships matter:

6. Time-reversal symmetry: the “dimensionality”
is effectively lowered

7. No time-reversal: the correction is small

A stationary analogy
g‘—l " — — following
— ‘ — — directly from
= Y Tr=" ‘*" — _|  Schrodinger
— — == equation for
s-1 s s+l H, +V cosat
« Take the original levels E, of H,

* Replicate them into a lattice with a shift
E:=E -sw
« Couple neighboring sites with V/
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Why RMT is not KQR

« Quantum rotor: ¥, =€"°, V(6) = cos,
Vii- 0 9., — out of resonance
V(t) O(t —nT) — all Fourier harmonics V ¢

» Particle in a box: g, =sinl@, V() O cosd,
V. DY) =11 Zong-range

* Random matrix: V. O const but

we want few Fourier harmonics V ¢

Spatial localization

. mean free path
Quantum correction to ~

the diffusion coefficient 1" d9%

of electrons in disorder D= D° _; J k2
) 7 UL
density of states sample
size

d=1. L, ~vD,~I
d = 2: I-Ioc - I eXp(VDO) (‘7)
d =3: no localization in weak disorder
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