Learning from re-sequencing data:
what to do when the $1000 genome
arrives?

Shamil Sunyaev

¢e=4 Division of Genetics

-:i? Department of Medicine
<z Brigham and Women'’s Hospital / Harvard Medical School

Harvard-M.l.T. Health Sciences & Technology Division



Genomes of many well-phenotyped

iIndividuals will be available soon

New sequencing technologies




Will this development revolutionize search

for genes underlying human phenotypes?

Our approach:

Learn from existing sequencing data

l

Simulate large sequencing studies



Functional genetic variation

Non-coding

1) Mutations In protein coding regions

2) Mutations in non-coding regions



Exon capture technology
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B Defined genomic enrichment before resequencing
B Fhotostimulating single neurons

B Purifying ribonuclecprotein compleses

B [mproving MS-based peptide identification

W Poverty and human development: research in site




Technically, non-neutral genetic

variation should not exist!

Forces to maintain variation:
Selection

Mutation



Why does a common genetic disease exist?

From evolutionary perspective common genetic disease should not exist:
natural selection should remove disease-causing alleles from the population

: MEDICALLY detrimental polymorphisms are
Theory 1: not EVOLUTIONARY deleterious

® Disease late onset (after the reproductive age)
® Changed environment and lifestyle (Selection direction reversal)

® Compensatory positive effect

Balancing selection
Frequency dependent selection
Antagonistic pleiotropy (Trade Off)




Mutation/selection balance

Theo ry - Common diseases are due to multiple rare
' deleterious alleles in mutation-selection balance

® Weak selection

® High mutation rate

CURRENT ESTIMATE:

~100 new mutations per genome
~1-2 new amino acid changes per genome



Association studies

Disease Control



Genome Wide Association Studies (GWAS)

Disease Control

500K SNP markers along the genome



. essons from Genome-Wide Association

Studies (GWAS)

e Some variants can be identified reproducibly
» ~10,000 of individuals provide sufficient power to detect SNPs
« Some variants make sense, while most look highly surprising

* In many cases effects are very small

* Relative risk is generally very small
* Very small fraction of heritable variation can be explained!
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Effect of four SNPs on HDL-C
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Mutation/selection balance

Theo ry - Common diseases are due to multiple rare
' deleterious alleles in mutation-selection balance

® Weak selection

® High mutation rate

CURRENT ESTIMATE:

~100 new mutations per genome
~1-2 new amino acid changes per genome



Effect of new missense mutations

Effect of new mutation may range from lethal, to
neutral, to slightly beneficial

NO DELETERIOUS POLYMORPHISM LOTS OF DELETERIOUS POLYMORPHISM

Mutations causing Mendelian diseases

%5
3¢

Mutation rate model : :
Human-chimpanzee divergence

Systematic re-sequencing datasets



Mutation model

Human ACCTTGCAAAT
Chimpanzee ACCTTACAAAT
Baboon ACCTTACAAAT

Prob(TAC->TGC) # Prob(TGC->TAC)

Prob(XY,Z->XY,Z) 64x3 matrix

Kryukov et al., Am. J. Hum. Genet. 2007



Effect of mutations: protein
coding regions
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A

Monsense mutations

Missense mutations

MNonsense mutations
Missense mutations

Splice-site mutations

Missense mutations

Splice-site mutations

Missense mutations

C

Synonymous mutations

Missense mutations

Synonymous mutations

Missense mutations

All de novo mutations

Mutations detected as cause of Mendelian disease

1
3.89
All de novo mutations

Mutations detected as cause of Mendelian disease

K
7.61

19.73

:

All de novo mutations

1

Mutations fixed in the human lineage
1




Effect of new missense mutations

Strongly Mildly Effectively
detrimental deleterious neutral
mutations mutations mutations
Sossaneniun diie el it 1 68% Singletons
ohesity-related genes N/A MAF >25%
— 20% Human lineage subst.
—i 65% Singletons
SeattleSNPs —i 32% MAF >25%
1 30% Human lineage subst.
i 61% Singletons
NIEHS-EGP b1 26% MAF >25%
H 22% Human lineage subst.
61% MAF <1%
JSNPs 24% MAF >25%
24% Human lineage subst.
L L 1
1 0.5 0

Fraction of mutations detected as polymorphisms
(normalized to the value expected under neutrality)



These estimates suggest that...

Table 2. Fraction of Deleterious Substitutions among Rare
Missense SNPs

Percentage of
Deleterious SNPs

No. of Sequenced among Missense
Set Individuals Singletons®
Resequencing data set of
obesity-related genes 757 71 = 8
NIEHS-EGP 90-95 64 = 1
SeattleSNPs 46-47 52 += 6

* Data are mean + SE.



Estimating strength of selection
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We conclude that...

Combined frequency of functional (mildly deleterious)
NsSSNPs in the average gene is 1%

Mutation-selection balance is a feasible explanation
for common human phenotypes



We conclude that...

Majority of low frequency missense variants are
functional (mildly deleterious)

“Mutation enrichment” association studies are
feasible



Will this development revolutionize search

for genes underlying human phenotypes?

Potential: Sequencing will make every
gene susceptible for genetic analysis

Most genes do not have a common functional coding
variant. However, all genes have rare coding variants.

Theory: Data:
U = 2x 108 Cumulative frequency of nsSNPs with
nt frequency below 5%
_ Sy 1()3 = -5
Ugene = 2X10°x10° = 2x10 EGP 2 8%
s =107
SeattleSNP 2.9%

f'= Ugene/s = 0.02 Ahituv et al. 2007 1.5%



Statistical challenge!

Sequencing will uncover many low frequency
variants.

1. Power to detect association with rare
variants Is reduced.

2. Multiple test correction becomes very
stringent



Combine all non-synonymous variants in a

single test

Sequence all exons
from individuals

at phenotypic
extremes

Identify genes with excess
variation at one extreme

Theory:

1)  Most new missense mutations are
functional (mutagenesis, population
genetics, comparative genomics)

2) Most new missense mutations are only
weakly deleterious (population genetics)

3) Most functional missense mutations are
likely to influence phenotype in the same
direction (mutagenesis, medical genetics)

Data:

multiple candidate gene studies

HDL-C, LDL-C, Triglycerides, BMI, Blood
pressure, Colorectal adenomas



Mutation enrichment association studies

And if we can
predict functional
missense variants

Disease

Control
e O————

— O —
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———



Predicting the effect of nsSNPs

His66Arg
P23946: Chymase precursor v

. . IVTSNGPSKFCGGFLIRRNFVLTAA H CAGRSITVTLGAHNITEEEDTWQKL. . .
Sequence alignment

AS FLIRRNEVLTAAH FIMVT HNIQ
LASCGGFLIRRNFVLTAAHC FIMVTLGAHNIQ
LASCGGFLIRRNFVLTAAHC FIMVT HNIQ
QY DEVLTAAH SVTVT HNIQ

Feature annotation

Key Begin End Description

Structure
l ACT SITE 66 66 Charge relay system. :

l ACT SITE 110 110 Charge relay system.
l ACT SITE 203 203 Charge relay system.

PREDICTION /

www.genetics.bwh.harvard.edu/pph




Pipeline

Analysis Prediction Interpretation
Sequence
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Obesity

Synonymous substitutions

21 genes

45 379 obese individuals
40 378 lean individuals
35
30
25
20
15 -
10+

Number of variants

Lean Obese

Ahituv et al., Am. J. Hum. Genet. 2007



Obesity

Nonsynonymous substitutions

21 genes
379 obese individuals
378 lean individuals

Number of variants
N
o1
|

Lean Obese

Ahituv et al., Am. J. Hum. Genet. 2007



Obesity

Nonsynonymous substitutions
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Ahituv et al., Am. J. Hum. Genet. 2007

21 genes
379 obese individuals
378 lean individuals



Is It feasible to scale up this approach to the
unbiased whole genome gene discovery?

N
Sequencing will be very cheap very soon... F
i

We will soon get large phenotyped populations...

>20,000 genes: with Bonferroni correction we need p-value < 2x10°

There are only 6,000,000,000 people on Earth

Is there enough variation in a single gene to guarantee sufficient
signal?



Demographic model with

four parameters

700,000

450

: generations
time

4,500

62V¢(x, p,t)
ox”

8,000 op(x.p.1) __Me(x.p1) 1
ot 0x 2




Neutral Wright-Fisher model for variable

population size

Diffusion approximation

o 1
ot 4N,

62
3 {g(1 -q)o}.

Kimura provided solution for constant population size

= (2 + 1)(1 — (1 — 2p)? i)
ola,tp Vo) = 3 PV OB e g 2 - 290 6 O,
i=1

Effective time
dt' = (Ny/Ny)dt.

0 1 8
£ = INy 8¢ {q(1 -q)o}.




Neutral Wright-Fisher model for variable
population size




Summing over epochs
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Site frequency spectrum in our sample
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Likelihood surface

M = 900000; © = 370. N, =8100; ©=370.
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N, = 8100; N, = 900000, N, = 7900; N, = 500000,




Agreement with the data

Neutral SNPs
| 400

350
300
250
200
150
100

50

M Experimental
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Number of SNPs

1/1400 2/1400 (3-6)/1400 0.5%-2% >2%-10% >10%-50%
Minor allele frequency



Distribution of selection

coefficients

0.3
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Selection coefficient, s



Missense mutations - adding

natural selection

Missense SNPs
180

160
140
120 B Experimental
100 - Simulation
80
60
40
20

Number of SNPs

lJ H = e s
1/1400 2/1400 (3-6)/1400 0.5%-2% >2%-10% >10%-50%
Minor allele frequency




Modeling the effect of mutations on

phenotype

We do not assume pre-existing variation with
phenotypic effect, we simply rely on mutation rate!

—1o MM, 1O



Are whole genome “mutation excess”

assoclation studies feasible?

Quantitative trait

\ Sequence /

Gene A Gene B Gene C
<5% >95% <5% >95% <5% >95%
percentile percentile percentile percentile percentile percentile

1 0 0 4 2 0

Missense V4 6 11 19 18 21
substituions 0 3 1 0 0 3
9 5 0 1 1 5

1 0 0 3 1 0

>20,000 genes: with Bonferroni correction we need p-value < 2x10-°



Power Table

Effect of Number of t:lumber of phenotyped individuals
functipnal _seq_u_enced
O g vidUals 40500 25,000 50,000 100,000 200,000
deviation)
5,000 0.11 0.18 0.24
0.250 10,000 0.24 0.31 0.40
20,000 0.38 0.51 0.59
5,000 0.36 0.47 0.57
0.50 10,000 0.56 0.69 0.77
20,000 0.76 0.84 0.88




What can we do with smaller sample sizes?

1.2
1
0.8 Find genes with
o larger
5}-6 phenotypic
effects
0.4
0.2
0
0 0.5 1 1.5 2 2.5

Mean shift, fraction of S.D.



What can we do with smaller sample sizes?

0 2000 4000 6000 8000 10000 12000
Gene length, nt

Find longer genes or
genes according to
pathways:

increase amount of variation;

reduce number of tests




Is this technologically feasible?

eSequencing

 New sequencing technologies

 EXxon capture is on the way

* We are approaching to $1,000 per exonome

* Phenotyping

» Current size of clinical cohorts: 10,000-30,000 individuals

* Well-phenotyped cohorts total 216,000

* Prospective collection of samples conditional on phenotype



What do we want?

Understanding allelic architecture

«Search for all variants, coding and non-coding, rare and
frequent to explain phenotypic variation in the population

Finding genes

*Very deep exon resequencing has a potential of finding
relevant genes even if their contribution into population
variation is very limited

*This approach is analogous to a genetic screen but relies on
natural mutations



Most of the Genome is Non-coding

... and probably is an evolutionary junkyard

However, many genomic regions
are highly conserved!

acgtcttcecttaggatc

gcatcttcecttaggeoc




Definition:

Conservation \ Con'ser*va'"tion\, n. [L. conservatio:
ct. F. conservation.] The preservation of a genetic
sequence over time due to natural selection.



Population genetics evidence

e Conserved regions are maintained by selection
rather than by reduced mutation rate or simply
by chance.

e Selective pressure maintaining conserved
regions Is weak.

Kryukov et al., Hum. Mol. Genet. 2005; Drake et al., Nature Genetics 2006; Chen et al. AJHG 2007



Other reasons to think that some

non-coding regions are important:

Medical genetics

Functional genomics



Medical Genetics

A Common Allele on Chromosome 9
Associated with Coronary

Heart Disease

Ruth McPherson,™*) Alexander Pertsemlidis,”™ Nihan Kavaslar,” Alexandre Stewart,”
Robert Roberts,” David R. Cox,” David A. Hinds,” Len A. Pennacchio,** Anne T;rl:d:'nl!rgl-Haru»uen,ﬁ
Aaron R. Felsom,” Eric Boerwinkle,” Helen H. Hobbs,™® Jenathan €. Cohen™'"¢

Coronary heart disease (CHDY is a major cause of death in Western countries. We used genomse-
wide association scannming to Wentify 2 53-kilobase interval on chromasome 9p21 that was
consistently associated with CHD in six independent samples {more than 23,000 participands)
from four Cawcasian populations. This interval, which is located near the COKNZA and COKNZE
genes, contains ng annotated genes and is not associated with established CHD risk factors such as
plasma lipeproteins, hypertension, or diabetes. Homozygotes for the risk allele make up 20 to
25% of Caucasians and hawe 2 -30 to 40% increased sk of CHID,
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What is In the genome?

 Does the genome consist of protein coding genes,
conserved regions and junk?

e Medical genetics and functional genomic data
cannot be fully explained by regional conservation.

 Is there anything else?



Chimp
Dog
Mouse

Rat

Humans

4G CBs

Asthana et al., PNAS 2007



4GCBs mostly reside outside of

50bp

100bp

Length

150bp

200bp

CNSs

Human-Mouse Sequence Identity

60% 70% 80% 90%
30.9% 7 7 7
17.6% 46.2% 78.6% 93.4%
30.4% 13.7% 4.5% 1.3%
19.7% 56.0% 83.3% 95.0%
29_7 12.0% 4.2% 1.0%
21.6% 61.0% 84.8% 95.8%
29.1% 11.1% 3.8% 0.8%
23.4% 63.8% 85.8% 96.4%




Nucleotide Diversity in 4GCBs and

non-4GCBs

Nucleotide diversity in different genomic

sequence features
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Is this due to mutation rate

heterogeneity?

o Allele frequency distribution

* Polymorphism to divergence ratio



Fraction of rare derived alleles
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Fraction of rare alleles iIn 4GCBs

and non-4GCBs

Fraction of rare derived alleles in different Fraction of rare derived alleles in 4GCBs and
genomic regions (HapMap) non-4GCBs (HapMap)
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How many functional positions are
needed to explain the effect?



e All non-4GCBs are neutral (this is the most
conservative assumption)

e 4GCBs are a mixture of neutral and functional
sites

 All functional 4GCBs are associated with the
same selection coefficient (this is the most
conservative assumption)



Fraction of rare neutral alleles
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Mixture of neutral and functional

s|tes
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How many functional sites are
needed to produce observed allele
frequency shift?
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Selective constraints in non-coding

regions of the genome

» Selectively constrained bases are diffusely distributed along
the genome rather than condensed to highly conserved
regions

o Atleast ~20% of 4GCBs are electively constrained (2% of
the genome sequence)

* Probably additional constrained positions in non-alignable
regions



Regions selected for the
ENCODE project have 22
mammalian species sequenced

... and a lot of functional genomics data



SCONE (Sequence CONservation

Evaluation)

Instantaneous rate matrix of transitions Q
P(t) = e

* |gnores mutation rate heterogeneity along the genome
e Assumes uniformity between species

e« Computes Bayesian estimate of evolutionary rate at the
site

Computes p-value via simulations

Asthana et al., PLoS CB 2007



Human Chimp Baboon

AGC ACC AGC

Mutation rates are modeled as
asymmetric and context
specific.

AGC

AGC—ACC

The model incorporates
Insertions and deletions



Estimating conservation

CTCCTTAAA

a
~/




Likelihood

F(i) = J
p(i = Gy.1,)-F(G,) p(i =G .1,) F(G,)

LG.GT)= Eni-F(i)

.G,C




Estimation of substitution rate

F(i,w) =
p(i = G, 0ty) F(G,)- p(i =G, wt,) - F(G,)

LG.GT,w)= Eyti-F(i,a))

,G,C
w_ . =argmaxL(G,G,T,w)

We also use Bayesian estimate of w

P-value can be computed via simulations



SCONE vs. ENCODE SNPs
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Conservation of functional features

0.35
0.30 [ cp6 Islands
i — 5 UTR
£ 0.25 - i
Chs
B
g 0.20 B 3 uTR
'E o.15 B Fromoters
e ] Enhancers
0.10 B Transcribed reglons
0.05 B Dnase I HS
. B Ancestral Repeats
0.00




Clustering of conserved positions

L
o
o
™
i
n
L
S
£
i
E
a
i
T
]
£
un

70,
60

501

30

20

10 ] ws. shuffled
B .. neutral

0

HS HS proximal HS distal

.
=

richmentin

Fold en



Non-coding nucleotides

*Analysis of available sequence data suggests
that most of selectively constrained
nucleotides in the genome are non-coding.

 However, on average, the effect of non-
coding mutations is much weaker.
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