From fitness landscapes to seascapes:
 Non-equilibrium dynamics of selection and adaptation

Ville Mustonen

Institute for Theoretical Physics
University of Cologne

Acknowledgments

- Michael Lässig

From fitness landscapes to seascapes [submitted manuscripe (2008)].
Molecular evolution under fluctuating selection [PRL (2008)].
Adaptive evolution in Drosophila species [PNAS (2007)].
Evolutionary population genetics of promoters [PNAS (2005)].

- Justin Kinney, Curt Callan \& Michael Lässig

Evolutionary analysis of binding sites in yeast species [PNAS (2008)].

What is the genomic signature of adaptive evolution?

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptation should be viewed as a non-equilibrium phenomenon quantified by a positive fitness flux Φ.
- Two case studies to illustrate the difference between positive selection and adaptation:
I. Yeast binding sites with positive selection but no apparent adaption.

2. Fruit fly genomes show evidence of adaptive evolution.

Example of a static fitness landscape: the one locus two alleles model

- Wright-Fisher process with drift, mutation, and selection.

$$
\mu_{0} N \ll 1 \quad \sigma=2 N\left(F\left(a^{\prime}\right)-F(a)\right)
$$

lighter shading indicates the fitter state

Example of a static fitness landscape: the one locus two alleles model

- Wright-Fisher process with drift, mutation, and selection.

$$
\mu_{0} N \ll 1 \quad \sigma=2 N\left(F\left(a^{\prime}\right)-F(a)\right)
$$

lighter shading indicates the fitter state

Example of a static fitness landscape: the one locus two alleles model

- Wright-Fisher process with drift, mutation, and selection.

$$
\mu_{0} N \ll 1 \quad \sigma=2 N\left(F\left(a^{\prime}\right)-F(a)\right)
$$

lighter shading indicates the fitter state

Example of a static fitness landscape: the one locus two alleles model

- Wright-Fisher process with drift, mutation, and selection.

$$
\mu_{0} N \ll 1 \quad \sigma=2 N\left(F\left(a^{\prime}\right)-F(a)\right)
$$

lighter shading indicates the fitter state

Example of a static fitness landscape: the one locus two alleles model

- Wright-Fisher process with drift, mutation, and selection.

$$
\mu_{0} N \ll 1 \quad \sigma=2 N\left(F\left(a^{\prime}\right)-F(a)\right)
$$

lighter shading indicates the fitter state

Example of a static fitness landscape: the one locus two alleles model

- Wright-Fisher process with drift, mutation, and selection.

$$
\mu_{0} N \ll 1 \quad \sigma=2 N\left(F\left(a^{\prime}\right)-F(a)\right)
$$

lighter shading indicates the fitter state

Detailed balance defines equilibrium:

$$
\begin{aligned}
\mathbf{j}_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}} & \equiv j_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}}-j_{\mathbf{a}^{\prime} \rightarrow \mathbf{a}} \\
& =Q(\mathbf{a}) u_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}}-Q\left(\mathbf{a}^{\prime}\right) u_{\mathbf{a}^{\prime} \rightarrow \mathbf{a}} \\
& =0
\end{aligned}
$$

Detailed balance defines equilibrium:

$$
\begin{aligned}
\mathbf{j}_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}} & \equiv j_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}}-j_{\mathbf{a}^{\prime} \rightarrow \mathbf{a}} \\
& =Q(\mathbf{a}) u_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}}-Q\left(\mathbf{a}^{\prime}\right) u_{\mathbf{a}^{\prime} \rightarrow \mathbf{a}} \\
& =0
\end{aligned}
$$

Detailed balance defines equilibrium:

$$
\begin{aligned}
\mathbf{j}_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}} & \equiv j_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}}-j_{\mathbf{a}^{\prime} \rightarrow \mathbf{a}} \\
& =Q(\mathbf{a}) u_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}}-Q\left(\mathbf{a}^{\prime}\right) u_{\mathbf{a}^{\prime} \rightarrow \mathbf{a}} \\
& =0
\end{aligned}
$$

Detailed balance defines equilibrium:

$$
\begin{aligned}
\mathbf{j}_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}} & \equiv j_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}}-j_{\mathbf{a}^{\prime} \rightarrow \mathbf{a}} \\
& =Q(\mathbf{a}) u_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}}-Q\left(\mathbf{a}^{\prime}\right) u_{\mathbf{a}^{\prime} \rightarrow \mathbf{a}} \\
& =0
\end{aligned}
$$

Detailed balance defines equilibrium:

$$
\begin{aligned}
\mathbf{j}_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}} & \equiv j_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}}-j_{\mathbf{a}^{\prime} \rightarrow \mathbf{a}} \\
& =Q(\mathbf{a}) u_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}}-Q\left(\mathbf{a}^{\prime}\right) u_{\mathbf{a}^{\prime} \rightarrow \mathbf{a}} \\
& =0
\end{aligned}
$$

- Fitness flux is zero at equilibrium:

$$
\Phi \equiv \Delta F \mathbf{j}_{\mathbf{a} \rightarrow \mathbf{a}^{\prime}}=0
$$

One locus two alleles model: looking at the averages

Equilibrium distributions

One locus two alleles model: looking at the averages

Time evolution from $\times(0)=0$

One locus two alleles model: looking at the averages

after infinite time

Under a static fitness landscape:

- Evolution reaches an equilibrium state where the number of substitutions with positive selection coefficients equals that of negative ones.
- Positively selected substitutions merely compensate for the previous deleterious substitutions.
- Fitness flux is zero.

Under a static fitness landscape:

- Evolution reaches an equilibrium state where the number of substitutions with positive selection coefficients equals that of negative ones.
- Positively selected substitutions merely compensate for the previous deleterious substitutions.
- Fitness flux is zero.

Selection coefficient distribution of genomic substitutions is symmetric

Under a static fitness landscape:

- Evolution reaches an equilibrium state where the number of substitutions with positive selection coefficients equals that of negative ones.
- Positively selected substitutions merely compensate for the previous deleterious substitutions.
- Fitness flux is zero.

Selection coefficient distribution of genomic substitutions is symmetric

Under a static fitness landscape:

- Evolution reaches an equilibrium state where the number of substitutions with positive selection coefficients equals that of negative ones.
- Positively selected substitutions merely compensate for the previous deleterious substitutions.
- Fitness flux is zero.

Selection coefficient distribution of genomic substitutions is symmetric

Under a static fitness landscape:

- Evolution reaches an equilibrium state where the number of substitutions with positive selection coefficients equals that of negative ones.
- Positively selected substitutions merely compensate for the previous deleterious substitutions.
- Fitness flux is zero.

Selection coefficient distribution of genomic substitutions is symmetric

- No sustained adaptive evolution is possible.

A minimal model for adaptive evolution: a macro-evolutionary fitness seascape

- Wright-Fisher process with drift, mutation, and time-dependent selection which switches at a rate γ between $+\sigma,-\sigma$

lighter shading indicates the fitter state
- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux Φ.

A minimal model for adaptive evolution: a macro-evolutionary fitness seascape

- Wright-Fisher process with drift, mutation, and time-dependent selection which switches at a rate γ between $+\sigma,-\sigma$

lighter shading indicates the fitter state
- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux Φ.

A minimal model for adaptive evolution: a macro-evolutionary fitness seascape

- Wright-Fisher process with drift, mutation, and time-dependent selection which switches at a rate γ between $+\sigma,-\sigma$

lighter shading indicates the fitter state
- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux Φ.

A minimal model for adaptive evolution: a macro-evolutionary fitness seascape

- Wright-Fisher process with drift, mutation, and time-dependent selection which switches at a rate γ between $+\sigma,-\sigma$

lighter shading indicates the fitter state
- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux Φ.

A minimal model for adaptive evolution: a macro-evolutionary fitness seascape

- Wright-Fisher process with drift, mutation, and time-dependent selection which switches at a rate γ between $+\sigma,-\sigma$

lighter shading indicates the fitter state
- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux Φ.

A minimal model for adaptive evolution: a macro-evolutionary fitness seascape

- Wright-Fisher process with drift, mutation, and time-dependent selection which switches at a rate γ between $+\sigma,-\sigma$

lighter shading indicates the fitter state
- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux Φ.

A minimal model for adaptive evolution: a macro-evolutionary fitness seascape

- Wright-Fisher process with drift, mutation, and time-dependent selection which switches at a rate γ between $+\sigma,-\sigma$

lighter shading indicates the fitter state
- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux Φ.

Macro-evolutionary fitness seascape

Cross-over from macro- to micro-evolutionary fitness seascape

Cross-over from macro- to micro-evolutionary fitness seascape

Micro-evolutionary fitness seascape

Micro-evolutionary fitness seascape

Implications of part I

Case study I: evolution of yeast transcription factor binding sites

Biophysics of sites determines biological function

- Binding energy $E(a)$ depends additively on the site sequence

$$
\mathbf{a}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right) \quad(\mathrm{ABF} \mid \text { sites: } \mathrm{k}=\mid 4):
$$

[Berg and v. Hippel (1986), Fields et al.J.Mol.Biol. (1997)]

$E(\mathbf{a})=\sum_{i=1}^{k} \epsilon_{i}\left(a_{i}\right)$

- Binding probability depends nonlinearly on binding energy:
[Gerland, et al. PNAS (2002)]

$$
w(E)=\frac{1}{1+\exp \left[(E-\rho) / k_{b} T\right]}
$$

- Binding energy is a quantitative molecular phenotype

Population dynamics of binding sites

- Wright-Fisher process with drift, mutation, and selection.
- Study the process at the level of substitution dynamics.
- Kimura-Ohta rates:
$u_{\mathbf{a} \rightarrow \mathbf{b}}=\mu_{\mathbf{a} \rightarrow \mathbf{b}} N \frac{1-\exp [-2(F(\mathbf{b})-F(\mathbf{a}))]}{1-\exp [-2 N(F(\mathbf{b})-F(\mathbf{a}))]}$

- Stationary distributions under neutral evolution:

$$
P_{0}(\mathbf{a}) \quad \text { such that } \quad \frac{P_{0}(\mathbf{a})}{P_{0}(\mathbf{b})}=\frac{\mu_{\mathrm{b} \rightarrow \mathrm{a}}}{\mu_{\mathrm{a} \rightarrow \mathrm{~b}}}
$$

- under selection (as given by the Kimura-Ohta rates):

$$
Q(\mathbf{a})=P_{0}(\mathbf{a}) \exp [2 N F(\mathbf{a})+\text { const. }]
$$

Measuring genomic fitness landscapes

- Project ensembles onto phenotype:

$$
\Rightarrow P_{0}(E), Q(E)
$$

- Hidden Markov Model for total counts:

$$
W(E)=(1-\lambda) P_{0}(E)+\lambda Q(E)
$$

ABFI in yeast

genomic energy distributions

experimental log intensities
[data from Lee et al. Science (2003)]

fitness landscape

Predicting cross-species evolution: binding energy divergence between orthologous site pairs

Dark part of the bars: binding sites without overlap with other binding sites.
Simulation under the inferred fitness landscape shown as a solid line.

ABFI sites consistent with equilibrium

phenotype distributions agree closely in four yeast species

distribution of fitness differences (black) between (S.cer-S.par) is closely symmetric

McDonald-Kreitman ratio

- Evolution a series of compensatory substitutions with no systematic change in the molecular phenotype.
- Fitness flux: $\Phi \sim 0$.
- Plenty of evidence for positively selected substitutions - yet no evidence for adaptation.

Case study II: fruit fly evolution

- Data consist of out-group directed polymorphism spectrums of different genomic classes in Drosophila species [Glinka et al. 2003, Andolfatto 2005 \& Ometto et al. 2005].
- Do model based inference of the evolutionary parameters using the minimal macro-evolutionary fitness seascape model.
- Is there evidence for adaptation: $\Phi>0$?

- Competing models:
I. macro-evolutionary seascape (solid line)

2. demographical model with a population bottleneck and equilibrium selection (long dashed line)
3. equilibrium selection (short dashed line)

- Assume stationary ancestral state and sum over it.
- Do Bayesian Inference of evolutionary parameters using both polymorphism and substitution data (correct scores for linkage effects).

Macro-evolutionary seascape gives a consistent description of fly genomes evolution

- All genomic categories (except 4-Fold synonymous) have positive fitness flux $\Phi>0$ i.e. $\sigma \gg \kappa>0$ and are highly adapted.
- What are possible reasons for the observed time-dependent selection?
I. Epistasis (substitutions in other loci change the preferred allele somewhere else).

2. External changes, e.g. environment.
3. ...

Conclusions

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

Conclusions

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

Conclusions

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

Conclusions

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

Conclusions

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

Conclusions

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

Data Acknowledgments

- Yeast: Kellis et al. 2003, Lee et al. 2003 \& Saccharomyces Genome Resequencing Project
- Fruit fly: Glinka et al. 2003, Andolfatto 2005 \& Ometto et al. 2005

