From fitness landscapes to seascapes: Non-equilibrium dynamics of selection and adaptation

Ville Mustonen

Institute for Theoretical Physics University of Cologne

Acknowledgments

Michael Lässig

From fitness landscapes to seascapes [submitted manuscript (2008)].
Molecular evolution under fluctuating selection [PRL (2008)].
Adaptive evolution in Drosophila species [PNAS (2007)].
Evolutionary population genetics of promoters [PNAS (2005)].

• Justin Kinney, Curt Callan & Michael Lässig

Evolutionary analysis of binding sites in yeast species [PNAS (2008)].

What is the genomic signature of adaptive evolution?

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptation should be viewed as a non-equilibrium phenomenon quantified by a positive fitness flux Φ .
- Two case studies to illustrate the difference between positive selection and adaptation:
 - I. Yeast binding sites with positive selection but no apparent adaption.
 - 2. Fruit fly genomes show evidence of adaptive evolution.

$$\mu_0 N \ll 1 \qquad \qquad \sigma = 2N(F(a') - F(a))$$

$$\mu_0 N \ll 1 \qquad \qquad \sigma = 2N(F(a') - F(a))$$

$$\mu_0 N \ll 1 \qquad \qquad \sigma = 2N(F(a') - F(a))$$

$$\mu_0 N \ll 1 \qquad \qquad \sigma = 2N(F(a') - F(a))$$

$$\mu_0 N \ll 1 \qquad \qquad \sigma = 2N(F(a') - F(a))$$

• Wright-Fisher process with drift, mutation, and selection.

$$\mu_0 N \ll 1 \qquad \qquad \sigma = 2N(F(a') - F(a))$$

lighter shading indicates the fitter state

$$\begin{aligned} \mathbf{j}_{\mathbf{a}\to\mathbf{a}'} &\equiv j_{\mathbf{a}\to\mathbf{a}'} - j_{\mathbf{a}'\to\mathbf{a}} \\ &= Q(\mathbf{a})u_{\mathbf{a}\to\mathbf{a}'} - Q(\mathbf{a}')u_{\mathbf{a}'\to\mathbf{a}} \\ &= 0 \end{aligned}$$

$$\mathbf{j}_{\mathbf{a}\to\mathbf{a}'} \equiv \mathbf{j}_{\mathbf{a}\to\mathbf{a}'} - \mathbf{j}_{\mathbf{a}'\to\mathbf{a}}$$

$$= \mathbf{Q}(\mathbf{a})u_{\mathbf{a}\to\mathbf{a}'} - \mathbf{Q}(\mathbf{a}')u_{\mathbf{a}'\to\mathbf{a}}$$

$$= 0$$

$$+\Delta F$$

$$\mathbf{j}_{\mathbf{a}\to\mathbf{a}'} \equiv j_{\mathbf{a}\to\mathbf{a}'} - j_{\mathbf{a}'\to\mathbf{a}}$$
$$= Q(\mathbf{a})u_{\mathbf{a}\to\mathbf{a}'} - Q(\mathbf{a}')u_{\mathbf{a}'\to\mathbf{a}}$$
$$= 0$$

$$\mathbf{j}_{\mathbf{a}\to\mathbf{a}'} \equiv j_{\mathbf{a}\to\mathbf{a}'} - j_{\mathbf{a}'\to\mathbf{a}}$$

$$= Q(\mathbf{a})u_{\mathbf{a}\to\mathbf{a}'} - Q(\mathbf{a}')u_{\mathbf{a}'\to\mathbf{a}}$$

$$= 0$$

$$\begin{aligned} \mathbf{j}_{\mathbf{a}\to\mathbf{a}'} &\equiv j_{\mathbf{a}\to\mathbf{a}'} - j_{\mathbf{a}'\to\mathbf{a}} \\ &= Q(\mathbf{a})u_{\mathbf{a}\to\mathbf{a}'} - Q(\mathbf{a}')u_{\mathbf{a}'\to\mathbf{a}} \\ &= 0 \end{aligned}$$

• Fitness flux is zero at equilibrium:

$$\Phi \equiv \Delta F \mathbf{j}_{\mathbf{a} \to \mathbf{a}'} = 0$$

One locus two alleles model: looking at the averages

One locus two alleles model: looking at the averages

One locus two alleles model: looking at the averages

x

- Evolution reaches an equilibrium state where the number of substitutions with positive selection coefficients equals that of negative ones.
- Positively selected substitutions merely compensate for the previous deleterious substitutions.
- Fitness flux is zero.

- Evolution reaches an equilibrium state where the number of substitutions with positive selection coefficients equals that of negative ones.
- Positively selected substitutions merely compensate for the previous deleterious substitutions.
- Fitness flux is zero.
 - Selection coefficient distribution of genomic substitutions is symmetric

- Evolution reaches an equilibrium state where the number of substitutions with positive selection coefficients equals that of negative ones.
- Positively selected substitutions merely compensate for the previous deleterious substitutions.
- Fitness flux is zero.

Selection coefficient distribution of genomic substitutions is symmetric

- Evolution reaches an equilibrium state where the number of substitutions with positive selection coefficients equals that of negative ones.
- Positively selected substitutions merely compensate for the previous deleterious substitutions.
- Fitness flux is zero.
 - Selection coefficient distribution of genomic substitutions is symmetric

Fitness flux is zero

D = ()

- Evolution reaches an equilibrium state where the number of substitutions with positive selection coefficients equals that of negative ones.
- Positively selected substitutions merely compensate for the previous deleterious substitutions.
- Fitness flux is zero.
 - Selection coefficient distribution of genomic substitutions is symmetric

Fitness flux is zero

• No sustained adaptive evolution is possible.

- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux $\,\Phi\,$.

- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux $\,\Phi\,$.

- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux $\,\Phi\,$.

- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux $\,\Phi\,$.

- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux $\,\Phi\,$.

- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux $\,\Phi\,$.

- System reaches a non-equilibrium steady state with more genomic substitutions with positive than with negative selection coefficients.
- The state is characterized by a positive fitness flux $\,\Phi\,$.

Macro-evolutionary fitness seascape

Micro-evolutionary fitness seascape

Micro-evolutionary fitness seascape

Implications of part I

Case study I: evolution of yeast transcription factor binding sites

http://www.microbeworld.org/htm/aboutmicro/gallery/gallery_06_sacc.htm; originally published: Microbiol. Rev. 54: 381-431, 1990.

Biophysics of sites determines biological function

• Binding energy $E(\mathbf{a})$ depends additively on the site sequence

$$a = (a_1, ..., a_k)$$
 (ABFI sites: k=14):

[Berg and v. Hippel (1986), Fields et al. J.Mol.Biol. (1997)]

$$E(\mathbf{a}) = \sum_{i=1}^{n} \epsilon_i(a_i)$$

k

 Binding probability depends nonlinearly on binding energy: [Gerland, et al. PNAS (2002)]

$$w(E) = \frac{1}{1 + \exp\left[(E - \rho)/k_b T\right]}$$

• Binding energy is a quantitative molecular phenotype

Population dynamics of binding sites

- Wright-Fisher process with drift, mutation, and selection.
- Study the process at the level of substitution dynamics.
- Kimura-Ohta rates:

$$u_{\mathbf{a}\to\mathbf{b}} = \mu_{\mathbf{a}\to\mathbf{b}} N \frac{1 - \exp[-2(F(\mathbf{b}) - F(\mathbf{a}))]}{1 - \exp[-2N(F(\mathbf{b}) - F(\mathbf{a}))]}$$

• Stationary distributions under neutral evolution:

$$P_0(\mathbf{a})$$
 such that $rac{P_0(\mathbf{a})}{P_0(\mathbf{b})} = rac{\mu_{\mathrm{b}
ightarrow \mathbf{a}}}{\mu_{\mathrm{a}
ightarrow \mathrm{b}}}$

• under selection (as given by the Kimura-Ohta rates):

 $Q(\mathbf{a}) = P_0(\mathbf{a}) \exp[2NF(\mathbf{a}) + \text{const.}]$

Measuring genomic fitness landscapes

- Project ensembles onto phenotype: $\Rightarrow P_0(E), Q(E)$
- Hidden Markov Model for total counts:

$$W(E) = (1 - \lambda)P_0(E) + \lambda Q(E)$$

ABF1 in yeast

[[]VM, Kinney, Callan, Lässig, PNAS (2008)]

Predicting cross-species evolution: binding energy divergence between orthologous site pairs

Dark part of the bars: binding sites without overlap with other binding sites. Simulation under the inferred fitness landscape shown as a solid line.

ABFI sites consistent with equilibrium

- Evolution a series of compensatory substitutions with no systematic change in the molecular phenotype.
- Fitness flux: $\Phi \sim 0$.
- Plenty of evidence for positively selected substitutions yet no evidence for adaptation.

Case study II: fruit fly evolution

- Data consist of out-group directed polymorphism spectrums of different genomic classes in Drosophila species [Glinka et al. 2003, Andolfatto 2005 & Ometto et al. 2005].
- Do model based inference of the evolutionary parameters using the minimal macro-evolutionary fitness seascape model.
- Is there evidence for adaptation: $\Phi > 0$?

http://www.exploratorium.edu/exhibits/mutant_flies/normal.gif

- Competing models:
 - I. macro-evolutionary seascape (solid line)
 - 2. demographical model with a population bottleneck and equilibrium selection (long dashed line)
 - 3. equilibrium selection (short dashed line)
- Assume stationary ancestral state and sum over it.
- Do Bayesian Inference of evolutionary parameters using both polymorphism and substitution data (correct scores for linkage effects).

Macro-evolutionary seascape gives a consistent description of fly genomes evolution

- All genomic categories (except 4-Fold synonymous) have **positive** fitness flux $\Phi > 0$ i.e. $\sigma \gg \kappa > 0$ and are highly adapted.
- What are possible reasons for the observed time-dependent selection?
- I. Epistasis (substitutions in other loci change the preferred allele somewhere else).
- 2. External changes, e.g. environment.

3. ...

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

n h h		
	$\Phi = 0$	

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

- Positive selection alone is not enough to prove adaptive evolution.
- Adaptive substitutions take place at a macro-evolutionary seascape and give rise to a positive fitness flux.
- Changes in selection trigger adaptive substitutions and thus fix the arrow of time in molecular evolution.

Data Acknowledgments

• Yeast: Kellis et al. 2003, Lee et al. 2003 & Saccharomyces Genome Resequencing Project

• Fruit fly: Glinka et al. 2003, Andolfatto 2005 & Ometto et al. 2005