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What is the genomic signature of adaptive 
evolution?

• Positive selection alone is not enough to prove adaptive evolution.

• Adaptation should be viewed as a non-equilibrium phenomenon quantified by a 
positive fitness flux      .

• Two case studies to illustrate the difference between positive selection and 
adaptation:  

1. Yeast binding sites with positive selection but no apparent adaption. 

2. Fruit fly genomes show evidence of adaptive evolution.

Φ



Example of a static fitness landscape:
the one locus two alleles model
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• Wright-Fisher process with drift, mutation, and selection. 
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Detailed balance defines equilibrium:
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Detailed balance defines equilibrium:

Φ ≡ ∆F j
a→a

′ = 0

• Fitness flux is zero at equilibrium:

j
a→a

′ ≡ ja→a
′ − ja′→a

= Q(a)ua→a
′ − Q(a′)ua

′→a

= 0



One locus two alleles model: 
looking at the averages

Equilibrium distributions



One locus two alleles model: 
looking at the averages

Time evolution from x(0)=0



One locus two alleles model: 
looking at the averages

after infinite time



• Evolution reaches an equilibrium state where the number of substitutions 
with positive selection coefficients equals that of negative ones. 

• Positively selected substitutions merely compensate for the previous 
deleterious substitutions.

• Fitness flux is zero.

Under a static fitness landscape:
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• Evolution reaches an equilibrium state where the number of substitutions 
with positive selection coefficients equals that of negative ones. 

• Positively selected substitutions merely compensate for the previous 
deleterious substitutions.

• Fitness flux is zero.
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Under a static fitness landscape:

• No sustained adaptive evolution is possible.



A minimal model for adaptive evolution: 
a macro-evolutionary fitness seascape

• Wright-Fisher process with drift, mutation, and time-dependent 
selection which switches  at a rate          between γ +σ,−σ

lighter shading indicates the fitter state

• System reaches a non-equilibrium steady state with more genomic 
substitutions with positive than with negative selection coefficients.

• The state is characterized by a positive fitness flux       .Φ
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[Takahata, Ishii, Matsuda PNAS (1975), 
Takahata, Kimura PNAS (1979)]
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Case study I: evolution of yeast transcription 
factor binding sites

http://www.microbeworld.org/htm/aboutmicro/gallery/gallery_06_sacc.htm; originally published: Microbiol. Rev. 54: 381-431, 1990.

http://www.microbeworld.org/htm/aboutmicro/gallery/gallery_06_sacc.htm
http://www.microbeworld.org/htm/aboutmicro/gallery/gallery_06_sacc.htm


E(a)
a1      …     ak

Biophysics of sites determines biological function

• Binding energy  E(a) depends additively on the site sequence     

a = (a1,…,ak)   (ABF1 sites: k=14):                                                     

[Berg and v. Hippel (1986), Fields et al. J.Mol.Biol. (1997)]  

• Binding probability depends nonlinearly on binding energy: 
[Gerland, et al. PNAS (2002)]

• Binding energy is a quantitative molecular phenotype
Strong binding Weak binding

E(a) =
k∑

i=1

εi(ai)

w

w(E) = 1
1+exp [(E−ρ)/kbT ]

E/kbT



Population dynamics of binding sites

• Wright-Fisher process with drift,  mutation, and selection.

• Study the process at the level of substitution dynamics.

• Kimura-Ohta rates:

ing site sequences has been introduced, where the
fitness of a site depends on the binding energy of
the corresponding factor [9]. The evolutionary im-
portance of the binding energy has also been high-
lighted in [10], where it was shown that nucleotide
substitution rates within functional sites in E. coli
depend on the energy difference induced by the sub-
stitution as predicted from the position weight ma-
trix. The biophysics of factor-DNA binding imposes
stringent constraints on the form of the fitness land-
scape [11] and has important consequences for bioin-
formatic binding site searches [12]. Using such fitness
landscapes, we have introduced a stochastic evolution
model for functional loci, which is based on Kimura-
Ohta point substitutions with rates governed by the
fitness difference between the corresponding sequence
states [13, 14]. This model demonstrates the possi-
bility of rapid adaptive formation of binding sites un-
der positive selection and provides evolutionary con-
straints on eukaryotic promoter architecture. A sim-
ilar evolutionary model [15] underlies a recently in-
troduced method to identify conserved binding sites
in multiple alignments [16].

In this paper, we develop a quantitative evolution-
ary rationale for the cross-species analysis of regula-
tory sequences, which goes beyond the mere predic-
tion of binding sites. For aligned regulatory DNA of
orthologous genes, our method predicts sites together
with their functional evolution. The method is based
on the evolution model of refs. [13, 14] and uses a
bioinformatic measurement of selection pressures for
functionality, which is obtained from sequence data
of verified functional sites. Typical functional loci
for pleiotropic factors, as exemplified by the cAMP
response protein (CRP) family in E. coli, are found
to be under substantial selection, in contrast to non-
functional loci, which evolve neutrally. For families of
aligned loci, our method assigns likelihood values to
different modes of evolution and associates them with
functional histories: (i) neutral evolution of nonfunc-
tional loci, (ii) evolution of functional loci under time-
independent selection, and (iii) evolution under time-
dependent selection, corresponding to loss or gain of
function along a given branch of the phylogeny.

Theory

Evolution models for nonfunctional sequence
and functional loci. We consider genomic loci
a = (a1, . . . , a!) consisting of ! contiguous nucleotides
and elementary substitution processes a → b, where
a, b are any two sequence states differing by exactly
one nucleotide. For nonfunctional (background) se-

quences, we use uniform nucleotide substitution rates
µa→b depending on the nucleotide to be mutated and
on its nearest sequence neighbors [17]. Models of this
type are neutral with respect to factor binding and
have been shown to provide a good description of in-
tergenic background DNA in E. coli [12]. A locus is
defined as functional if binding of the corresponding
factor at that locus affects the regulation of a gene.
Functional loci are assumed to be under selection.
This is described by a (Malthusian) fitness function
F (a), which measures the contribution of a genotype
a to the growth rate of the number of individuals
carrying that genotype (and is therefore defined only
up to an additive constant, the genotype-independent
fitness). Notice that this definition of a functional lo-
cus is weaker than that of a functional binding site,
which is a functional locus with a sequence state a
that is likely to actually bind the factor. A functional
locus can lose its binding sequence due to deleterious
mutations, and conversely, a nonfunctional locus can
become a spurious binding site. According to the
Kimura-Ohta theory [18, 19, 20], selection leads to
modified substitution rates at functional loci,

ua→b = µa→bN
1 − exp[−2(F (b) − F (a))]

1 − exp[−2N(F (b) − F (a))]
, (1)

where N denotes the effective population size. In
writing (1), we have assumed µN # 1, so that sub-
sequent substitution processes are well separated in
time and can be assumed independent.

Stationary population distributions and evo-
lutionary scoring. For background sequences, we
use a stationary distribution of the form [12]

P0(a) = p0(a1)
!

∏

i=2

π0(ai|ai−1), (2)

where p0(a) is the single-letter equilibrium distribu-
tion and π0(a|a′) is the conditional distribution for
letter a given its left neighbor a′ (see supporting infor-
mation). Assuming the underlying neutral dynamics
with rates µatob satisfies detailed balance, the dy-
namics under selection satisfies detailed balance as
well, and the stationary distribution for functional
loci takes the form [13, 14]

Q(a) = P0(a) exp[2NF (a) + const.], (3)

with the constant given by the normalization
∑

a
P0(a) =

∑

a
Q(a) = 1. These distributions give

the probability density to find a locus with sequence
a, which can be inferred from long-term frequency

2

   

2N∆F

u/µ

ing site sequences has been introduced, where the
fitness of a site depends on the binding energy of
the corresponding factor [9]. The evolutionary im-
portance of the binding energy has also been high-
lighted in [10], where it was shown that nucleotide
substitution rates within functional sites in E. coli
depend on the energy difference induced by the sub-
stitution as predicted from the position weight ma-
trix. The biophysics of factor-DNA binding imposes
stringent constraints on the form of the fitness land-
scape [11] and has important consequences for bioin-
formatic binding site searches [12]. Using such fitness
landscapes, we have introduced a stochastic evolution
model for functional loci, which is based on Kimura-
Ohta point substitutions with rates governed by the
fitness difference between the corresponding sequence
states [13, 14]. This model demonstrates the possi-
bility of rapid adaptive formation of binding sites un-
der positive selection and provides evolutionary con-
straints on eukaryotic promoter architecture. A sim-
ilar evolutionary model [15] underlies a recently in-
troduced method to identify conserved binding sites
in multiple alignments [16].

In this paper, we develop a quantitative evolution-
ary rationale for the cross-species analysis of regula-
tory sequences, which goes beyond the mere predic-
tion of binding sites. For aligned regulatory DNA of
orthologous genes, our method predicts sites together
with their functional evolution. The method is based
on the evolution model of refs. [13, 14] and uses a
bioinformatic measurement of selection pressures for
functionality, which is obtained from sequence data
of verified functional sites. Typical functional loci
for pleiotropic factors, as exemplified by the cAMP
response protein (CRP) family in E. coli, are found
to be under substantial selection, in contrast to non-
functional loci, which evolve neutrally. For families of
aligned loci, our method assigns likelihood values to
different modes of evolution and associates them with
functional histories: (i) neutral evolution of nonfunc-
tional loci, (ii) evolution of functional loci under time-
independent selection, and (iii) evolution under time-
dependent selection, corresponding to loss or gain of
function along a given branch of the phylogeny.

Theory

Evolution models for nonfunctional sequence
and functional loci. We consider genomic loci
a = (a1, . . . , a!) consisting of ! contiguous nucleotides
and elementary substitution processes a → b, where
a, b are any two sequence states differing by exactly
one nucleotide. For nonfunctional (background) se-

quences, we use uniform nucleotide substitution rates
µa→b depending on the nucleotide to be mutated and
on its nearest sequence neighbors [17]. Models of this
type are neutral with respect to factor binding and
have been shown to provide a good description of in-
tergenic background DNA in E. coli [12]. A locus is
defined as functional if binding of the corresponding
factor at that locus affects the regulation of a gene.
Functional loci are assumed to be under selection.
This is described by a (Malthusian) fitness function
F (a), which measures the contribution of a genotype
a to the growth rate of the number of individuals
carrying that genotype (and is therefore defined only
up to an additive constant, the genotype-independent
fitness). Notice that this definition of a functional lo-
cus is weaker than that of a functional binding site,
which is a functional locus with a sequence state a
that is likely to actually bind the factor. A functional
locus can lose its binding sequence due to deleterious
mutations, and conversely, a nonfunctional locus can
become a spurious binding site. According to the
Kimura-Ohta theory [18, 19, 20], selection leads to
modified substitution rates at functional loci,

ua→b = µa→bN
1 − exp[−2(F (b) − F (a))]

1 − exp[−2N(F (b) − F (a))]
, (1)

where N denotes the effective population size. In
writing (1), we have assumed µN # 1, so that sub-
sequent substitution processes are well separated in
time and can be assumed independent.

Stationary population distributions and evo-
lutionary scoring. For background sequences, we
use a stationary distribution of the form [12]

P0(a) = p0(a1)
!

∏

i=2

π0(ai|ai−1), (2)

where p0(a) is the single-letter equilibrium distribu-
tion and π0(a|a′) is the conditional distribution for
letter a given its left neighbor a′ (see supporting infor-
mation). Assuming the underlying neutral dynamics
with rates µatob satisfies detailed balance, the dy-
namics under selection satisfies detailed balance as
well, and the stationary distribution for functional
loci takes the form [13, 14]

Q(a) = P0(a) exp[2NF (a) + const.], (3)

with the constant given by the normalization
∑

a
P0(a) =

∑

a
Q(a) = 1. These distributions give

the probability density to find a locus with sequence
a, which can be inferred from long-term frequency

2

• Stationary distributions under neutral evolution:

• under selection (as given by the Kimura-Ohta rates):

P0(a)

P0(b)
=

µb→a

µa→b

P0(a) such that

[J.Berg, S.Willmann, M.Lässig, BMC Evol. Biol. (2004)]



Measuring genomic fitness landscapes

W (E) = (1 − λ)P0(E) + λQ(E)

ABF1 in yeast

• Project ensembles onto phenotype:   

• Hidden Markov Model for total counts:

⇒ P0(E), Q(E)
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Predicting cross-species evolution: binding energy 
divergence between orthologous site pairs

!0.4 0 0.4
0

0.05

0.1

0.15

∆E ∆E

0.26

!0.4 0 0.4
0

0.05

0.1

0.15

a) b) c)

Ω
τ
(∆

E
)

∆E

0.37

!0.4 0 0.4
0

0.05

0.1

0.15

S. cer. - S.par. S. cer. - S.mik. S. cer. - S.bay.

Dark part of the bars:  binding sites without overlap with other binding sites.

Simulation under the inferred fitness landscape shown as a solid line.



 ABF1 sites consistent with equilibrium
phenotype distributions

agree closely in four 
yeast species

distribution of fitness 
differences (black)

between (S.cer-S.par) is 
closely symmetric

McDonald-Kreitman 
ratio

• Evolution a series of compensatory substitutions with no systematic 
change in the molecular phenotype.

• Fitness flux:                 .  

• Plenty of evidence for positively selected substitutions - yet no 
evidence for adaptation.

Φ ∼ 0

[see also Moses et al. BMC Evol. Biol. (2003)]
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Case study II: fruit fly evolution

• Data  consist of out-group directed polymorphism spectrums of 
different genomic classes in Drosophila species [Glinka et al. 2003,  Andolfatto 2005 & 

Ometto et al. 2005].

• Do model based inference of the evolutionary parameters using the 
minimal macro-evolutionary fitness seascape model.

• Is there evidence for adaptation:                  ?Φ > 0

http://www.exploratorium.edu/exhibits/mutant_flies/normal.gif

http://www.exploratorium.edu/exhibits/mutant_flies/normal.gif
http://www.exploratorium.edu/exhibits/mutant_flies/normal.gif


Coding (4-Fold synonymous top) 
Nonsynonymous (bottom)

Intergenic Intronic UTRs

• Competing models: 

1. macro-evolutionary seascape (solid line)

2. demographical model with a population bottleneck and equilibrium selection
(long dashed line)

3. equilibrium selection (short dashed line)

• Assume stationary ancestral state and sum over it.  

• Do Bayesian Inference of evolutionary parameters using both polymorphism and 
substitution data (correct scores for linkage effects).



• All genomic categories (except 4-Fold synonymous) have positive 
fitness flux               i.e.                     and are highly adapted.

• What are possible reasons for the observed time-dependent 
selection?

1. Epistasis (substitutions in other loci change the preferred allele somewhere else).

2. External changes, e.g. environment.

3. . . .

Φ > 0 σ ! κ > 0

σ

κ

Nonsynonymous

UTRsIntronic

Intergenic

4-Fold synonymous

Φ

Macro-evolutionary seascape gives a consistent description of fly 
genomes evolution
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to a positive fitness flux.
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