Evolution of influenza: A molecular red queen race

Michael Lässig

Institute for Theoretical Physics, University of Cologne

joint work with Natalja Strelkowa, Imperial College, London

An evolutionary biologist's dream

- Influenza is a well-observed evolutionary system:
 - viral genome: consists of 8 recombining segments
 haemagglutinin coding sequence: data available over 40 years
 - functional information on host interactions (via epitope)

viral epitope (containing receptorbinding site)

viral haemagglutinin (surface protein)

human antibody (containing antigen-binding fragment)

An evolutionary biologist's dream

- phenotypic data: **strain-serum interactions** measured by haemagglutinin inhibition tests

-> in vivo time series on adaptation to a changing environment.

An theorist's nightmare

• Influenza is a strong-coupling system:

- linkage within the HA1 domain sequence
- strong and complex selection with explicit time- and frequency dependence
- high mutation rate

- Can we quantify natural selection acting on this system?
- Can we predict its antigenic evolution?

1. Reconstructing the evolution of the influenza genome

Genetic trees

- Coalescent tree based on HA1 sequences of 1971 influenza H3N2 strains:
- Genome evolution follows an approximate molecular clock of 4 substitutions/year in the HA1 domain
- Sequence diversity is limited, coalescent times are ~ 3.5 yrs

2. Effects of genomic linkage and high mutation rate

■ In a **small population**, fixations of benefical mutations are rare and independent:

Clonal interference: competion of linked beneficial mutations in a large asexual population

[Gerrish and Lenski, Park and Krug, Desai and Fisher]

Clonal interference leads to

- -- the same **temporal ordering** of origination and fixation events
- -- **clustering** of fixation times.

Clonal interference in the influenza HA1 domain:
 10 co-fixation clusters account for 75% of the substitutions.

 Dips in sequence diversity correlate with fixation clusters.

Influenza has an extremely high mutation rate:

 5.8×10^{-3} / bp yr (synonymous substitutions)

■ This leads to **multiple originations** of the same mutation in **competing clones**:

• Stochastic clonal interference: multiple originations partially randomize the temporal order of originations and fixations.

The **fixation** of a polymorphism always occurs in a **single** most successful clone.

3. Inference of selection

- Clonal interference reduces differences between sequence classes:
 - distribution of **fixation times**:

- polymorphism spectra, ...

- Selection inference from allele frequency time series:
 - frequency propagator

$$G(x_f|x_i)$$

- propagator ratio between sequence classes

$$\phi(x_f) = G(x_f|x_i)/G_0(x_f|x_i)$$
 (x_i << 1)

- Non-epitope aminoacid changes are under negative selection:
- fraction of selected sites:

$$> \phi(1) = 80\%$$

- strength of selection:

$$s < -s^* = -1/3 \text{ yrs}$$

s*~ 3 yrs: characteristic sweep time

 $\rightarrow \mu / s^* = 0.02$ is (not far) below the error threshold.

• Epitope aminoacid changes are under positive selection:

- fraction of selected substitutions: $> \phi(1) 1 = 50\%$
- strength of selection:

$$s > s^* = 1/3 yrs$$

→ sweeps are driven by combinations of beneficial mutations.

Selection and viral ecology

Microevolutionary fitness changes
 are measured by return propagator of lost alleles

$$G_r(x_t|x_i)$$

propagator ratio between sequence classes

$$\phi_r(x_t) = G_r(x_t|x_i)/G_{0r}(x_t|x_i) (x_i << 1)$$

- Overrepresentation of high frequencies at intermediate times ($\phi_r > 1$)
 - is incompatible with directional selection
 - shows **red queen effect**: decay of fitness due to host immunity.

Conclusion

- Influenza evolution is shaped by
 - strong selection,
 - linkage,
 - high mutation rates.
- Stochastic clonal interference:
 strong sweeps governed by multiple driving mutations.
- Selection is dynamic: host immunity generates red queen race.
- This system will lead to new concepts in population genetics and should become a model organism.

• Red queen race: micro-evolutionary predictability or epistasis?