Cluster Entropy Profiles

Megan Donahue
Michigan State University

Collaborators: Mark Voit (MSU), Ken Cavagnolo (Nice), Aaron Hoffer (MSU), Seth Bruch (MSU), Emily Wang (MSU), Amalia Hicks (MSU), Deb Haarsma (Calvin), Luke Leisman (Calvin), Ming Sun (UVa), Genevieve de Messieres (UVa), Robert O’Connell (UVa), Brian McNamara (UW), Paul Nulsen (SAO), the REXCESS collaboration
Why entropy?
Entropy: A Review

Definition of S: \[\Delta S = \Delta(\text{heat}) / T \]

Equation of state: \[P = K \rho^{5/3} \]

Relationship to S: \[S = N \ln K^{3/2} + \text{const.} \]

Convective Stability: \[d \left(\frac{S}{dr} \right) \geq 0 \]

Useful Observable: \[Tn_e^{-2/3} \propto K \]

Only heat loss can reduce \(Tn_e^{-2/3} \)

Only heat input can raise \(Tn_e^{-2/3} \)
Fundamentals of Cluster Structure

Properties of relaxed cluster determined by:

- shape of halo
- entropy distribution of intracluster gas

MS 1054-0321 / Donahue et al. (1998)
Clusters without Feedback

Self-similar entropy profiles in absence of galaxy formation scale with

\[K_{200} = \frac{T_{200}}{(200 f_b \rho_{cr})^{2/3}} \]

Also,

\[K(r) \sim r^{1.2} \]

Voit, Kay, & Bryan (2005)
Allow baseline profile to cool for a Hubble time in an NFW potential, and remove gas at $r = 0$ when $K = 0$.

Wednesday, March 16, 2011
Chandra Entropy Profiles

- Pure cooling model is lower limit to observed profiles
- Most profiles are well fit with:
 \[K(r) = K_0 + K_{100}\left(\frac{r}{100 \text{ kpc}}\right)^\alpha \]
 - \(K_{100} \sim 150 \text{ keV cm}^2 \)
 - \(\alpha \sim 1.2 \)
Distribution of Core Entropy

Distribution of K_0 is bimodal with deficit at $K_0 \sim 30$-50 keV cm2 corresponding to a cooling time ~ 1 Gyr.

Cavagnolo et al. (2008, 2009)
See also:
Sanderson et al. (2009)
Hudson et al. 2010
(HIFLUGGS)
Cool cores have steeper entropy slopes than non-cool core clusters.
Cool cores have steeper entropy slopes than non-cool core clusters.

Sanderson et al. 2009
How is core entropy related to feedback signatures?
Central galaxy of a $z < 0.2$ cluster can be a strong radio source only if

$$K_0 < 30 \text{ keV cm}^2$$

Radio data from NVSS+SUMMS within 20” of X-ray peak

Cavagnolo et al. (2008)
K_0 and $H\alpha$ Emission

Central galaxy can have emission-line nebulosity only if

$$K_0 < 30 \text{ keV cm}^2$$

$H\alpha$ data from many diverse sources

Cavagnolo et al. (2008)
K_0 and Central Blue Gradient

Central galaxy can have blue gradient indicating star formation only if

$$K_0 < 30 \text{ keV cm}^2$$

Rafferty et al. (2008)
K₀ and UV color

124 BCGs
GALEX-2MASS colors

Hoffer, Donahue et al. 2011, in prep
K_0 and Spitzer 24 micron excess

Hoffer, et al. 2011, in prep

83 BCGs with Chandra + MIPS 24 micron
K_0 and L_K
K_0 and L_K

Extra L_K for some BCGs with $K_0 < 30$ keV cm2

K-band luminosity inside $r=10$ kpc does not depend on K_0 ($K_0 > 30$ keV cm2)
Multiphase Gas in REXCESS BCGs
REXCESS Cooling Times

REXCESS cool-core classification based on t_{cool} at 0.003 R_{500}
Entropy profile depends on cluster morphology.

Pratt et al. 2010
BCGs in REXCESS

• Haarsma et al. 2010: no correlation with BCG luminosity and central cooling time or K0.

• Donahue et al. 2010: only BCGs in REXCESS CC’s exhibited excess UV and/or Hα emission ($f_{H\alpha} = 70\%$ of REXCESS CCs)
Cooling–Time Threshold for $\text{H}\alpha$

Donahue et al. (2010)
Spitzer studies of emission-line BCGs
Spitzer IRS Spectra of 9 cool-core BCGs

- Show PAHs, [Ne II], strong H2 lines
- PAH/IR and PAH/PAH ratios similar to star forming galaxies (Donahue et al. 2011)
- H$_2$ consumption timescales 1 Gyr or less, similar to star-forming galaxies and starbursts
H$_2$ depletion \sim Gyr

diamond: Leroy et al. 2008
triangle: Solomon & van den Bout 2005
speculations about the distribution of K_0
Distribution of Core Entropy

Distribution of K_0 is bimodal with deficit at $K_0 \sim 30-50$ keV cm2 corresponding to a cooling time ~ 1 Gyr.

Cavagnolo et al. (2008)
See also Hudson & Reiprich
No consensus from simulations on distribution of K_0 without cooling & feedback
Distribution of Core Entropy

If conduction is inefficient, cooling causes clusters with $t_c < \text{few Gyr}$ to migrate to lower K_0.

Wednesday, March 16, 2011
Distribution of Core Entropy

Episodic AGN feedback can plausibly maintain clusters in a quasi-steady state with

\[K_0 \sim 10-20 \text{ keV cm}^2 \]

Voit & Donahue (2005)
See also Kaiser & Binney
Distribution of Core Entropy

Raising K_0 by a large factor requires an implausibly large AGN outburst.

Mergers are also ineffective at producing large K_0 jumps.
Distribution of Core Entropy

If conduction is operating, mergers can more easily cause clusters with $K_0 > 30$ keV cm2 to migrate to greater K_0.

![Histogram of Core Entropy Distribution](image)
Distribution of Core Entropy

How many clusters with $K_0 > 100$ keV cm2 are mergers in progress that will eventually relax to a low K_0 state?
Summary

• Cluster population is bimodal (may include an intermediate mode)
• Central AGN and BCG star formation activity responds to state of ICM
• ICM is multiphase for low K_0
• High K_0 seems more common in disturbed clusters