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Motivation

• Traps allow exploration of rotating quantum 
bose fluids well beyond limitations of 4He 
Schweikhard et al PRL 040404 (2004)

• There has been a vigorous recent investigation 
of the equilibrium states in the mean field 
Quantum Hall regime
Butts & Rokhsar Nature 397 327 (1999), 
Ho PRL 060403 (2001)
Kavoulakis, Mottelson & Pethick PRA 62 063605 (2000)
Cooper, Komineas, Read cond-mat 0404112

• There has been less investigation of the 
dynamics 

• Linn &Fetter PRA 063603 (2000), PRA 4910 (1999)  
Mueller and Ho PRL 063602 (2003) , Baym PRA 69 043618 (2004) 
Sinova, Hanna & Macdonald PRL 030403 (2002)



Key results

• Will show that the LLL hydrodynamics is 
rather different to conventional (TF) 
hydrodynamics

• ‘Only’ vortices in the system (and no 
density modes)

• But the most convenient description is not 
in terms of the vortex co-ordinates

• Vortices interact weakly at short distances  



Vortices in the LLL

LLL: NKW, Gunn & Smith PRL 80 2265 (1998)
• Can represent any wavefunction in the LLL by

• Where z=x+i y
• Polynomial factorises 

• And the nodes {ζα} are the positions of the 
vortices.

ψ(z, t) =
m=0

am(t)z
me−|z|

2/2

|ζi = ψ(z, t) = C

∞Y
α=1

(z − ζα(t))e
−|z|2/2



Properties of the Wavefunction

• Mean field wavefunction (for all N atoms)

• Once {ζα} is specified the whole state is 
specified 

• Each Ψ in LLL ⇔ {ζα} 
(not all the vortices need be inside the trap, some 
may be at infinity)

Φ =

NY
i=1

ψ(zi, t) = C
N

NY
i=1

∞Y
α=1

(zi − ζα)e
−|z|2/2



Contrast with Superfluid Case

• In a conventional superfluid the vortices 
and normal fluid are distinct 

(e.g. Bogoliubov, phonons…)
• In this case there is apparently

No conventional normal fluid



Hamiltonian in vortex representation

• We use                         as a variational (fully condensed) 

trial function. The {ζα} become variational parameters.

• Express energy in terms of the Symmetric Polynomials 

E =
hζ|H|ζi
hζ|ζi

Pn(ζ) =
X

i1<i2<···<in
ζi1ζi2 · · · ζin

H =
NX
i=1

⎛⎝− ~2
2m
∇2 + 1

2
r2i +

1

2
η

NX
j=1, 6=i

δ(ri − rj)− ω.L
⎞⎠



E = πNS−1
MX
m

|PM−m(ζ)|2(m+ 1)!− πNωS−1
MX
m

|PM−m(ζ)|2mm!

+
λ

4
N(N−1)S−2

MX
m,n,p,q=0

P ∗M−m(ζ)P
∗
M−n(ζ)PM−p(ζ)PM−q(ζ)(p+ q)!2

−(p+q)δm+n,p+q

S = (π
NvX
n=0

P ∗Nv−m(ζ)P
∗
Nv−m(η)m!)

• Compare with the incompressible case in a container of radius R 
(neglecting images)

H = −1
2
Γ2ρ

X
i<j

ln |ζi − ζj |− ωΓρ
X
i

(R2 − |ζi|2)

•Multivortex interaction is analytic in the vortex co-ordinates

•The rotation terms couple to collective variables



Which variables to use?

ψ(z, t) = c
MY
α

(z − ζα(t))e−|z|2/2

=
X
m

(−1)mPN−m(ζ)zme−|z|2/2

=
X
m

am(t)z
me−|z|

2/2

• The Hamiltonian indicates that the PM-m({ζ}) or rather 
their numerical values, am, are more natural than {ζ} for 
calculations – and this is true dynamically as well

• Descriptions are equivalent and uniquely related: 

{am}⇒ unique polynomial ⇒ unique roots are  ζ



A few examples of what can be 
studied

• Surface waves (linear & non-linear)
Explicitly connected to vortex motion within the 
trap 

• Two-vortex motion at small separation
• Molten small `blob’ of vortex matter in 

the trap.



Hydrodynamic Variables

• If we re-write 

• Then Lagrangian is

am(t) =
ρm(t)
πm! e

−iφm(t)

L = N
(
S−1

MX
m=0

ρm[φ̇m − (1 +m[1− ω])]− λN

4π

MX
m,n,p,q=1

δp+q,m+n

r
(m+ n)!

2m+nm!n!

s
(p+ q)!

2p+qp!q!

√
ρmρnρpρq cos((φm + φn)− (φp + φq))

)



Surface waves

• Consider the case of 
 ρ0 ' 1,ρm ¿1, ρn=0 (n≠ m and n≠ 0)

 This leads to

 contrast with TF result, where ω ∝ √m

˙φm − φ̇0 = m(1− ω) + λN

2π

³
1− 2−(m−1)

´
+ρm

λN

2π
(2−(m−2) − 1− (2m)!

m!2
2−2m)

Stringari PRL 77 2360 (1996)

linear: Kavoulakis, Mottelson & Pethick PRA 62 063605 (2000)



How are these surface waves?

• Need to interpret in terms of

• There are m roots, so m vortices in a 
regular polygon

Relationships between surface waves and vortices in the TF case 
were realised by

Tsubota, Kasamatsu & Ueda PRA 023603 (2002)
Anglin PRL 87 240401 (2001)

ψ(z, t) = (a0(t) + am(t)z
m) e−|z|

2/2



m=5 a5=0.001
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• If one neglects small scale detail – surface wave 
• Look more closely see the vortices responsible
• As the vortices move in….



Two vortices

• Now we will examine the dynamics of the vortices as 
evolve from representing a surface wave to moving 
under each other’s influence at small separation within 
the trap – for simplicity consider 2 vortices.
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Two vortex system

• As ρ2→ 1, vortex positions (ζ1=-ζ2 =ζ→ 0)

• Relationship between vortex positions and a0
and a2 from

• so

|C|2 = 1
π

1
2+|ζ|2

ω(2) = 2(1− ω)− λN

4π

µ
1− 3

4
ρ2

¶

C (z − ζ)(z + ζ) = C (z2 − ζ2) = a0 + a2z2

ρ2 =
2

2 + ζ4



LLL versus incompressible vortex 
dynamics

ω(2) = 2(1− ω)− λN

4π

µ
1− 3

4

2

(2 + ζ4)

¶Compare LLL frequency for the relative 
motion of two vortices at separation ζ

With the incompressible result: 
ω=Γ/(2 π ζ2 )
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Vortex Patch

• The ‘soft’ nature of the vortex interaction at 
short distances suggests that small 
aggregates of ‘molten’ vortices will also 
behave differently to patches of 
incompressible molten vortices.

• Consider M vortices randomly arranged in 
a region of extent |ζα| ≤ 1√

M



ρM and ρM-1 are largest so we find

• This contrasts strongly with vortices in the 
incompressible case, where there would 
be very high frequency motion due to the 
close pairs ∼ 1

rij

φ̇M−1 ∝ d

dt
arg(ζ1 + · · ·+ ζM ) = (M − 1)(1− ω) + 3λN

4π

r
1

πM
+O(ρM−1)



Normal Fluid ?

• Although LLL wavefunctions completely 
specified by vortices one could choose to divide 
them into those inside and outside the trap

• Outside: treated collectively as the surface 
waves- and treat them as the normal fluid.

• There is evidence of the the surface waves in 
the TF limit being in general an agent for 
allowing vortices to enter the system

• Kusamatsu, Tsubota & Ueda PRA 67 033610 (2003)
• Lobo, Sinatra & Castin PRL 92 020403 (2004)



How do the vortices do this?

• As vortex lattice “cools” must exchange 
energy and angular momentum with 
Tkachenko waves and hence with surface 
waves

• Turbulence of the surface waves in a LLL 
system may be the simplest form of 
turbulence one can imagine – what is the 
equilibrium power spectrum etc….



Key results

• Have shown that the LLL hydrodynamics is 
rather different to conventional (TF) 
hydrodynamics

• ‘Only’ vortices in the system (and no density 
modes) – no normal fluid in the conventional 
sense. 

• But the most convenient description is not in 
terms of the vortex co-ordinates

• Vortices interact weakly at short distances 
• Outer vortices may be thought of as surface 

waves and as a kind of normal fluid. 
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