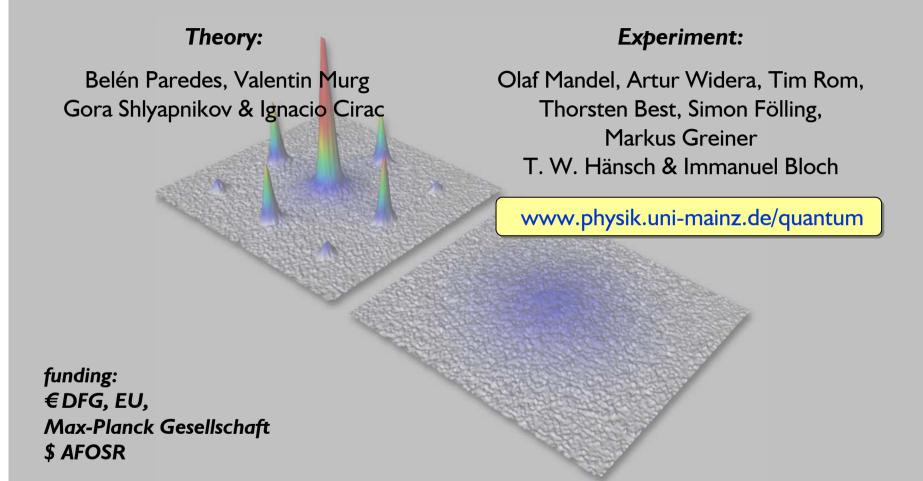
# Tonks Girardeau Gas in an Optical Lattice



Ludwig-Maximilians-Universität & Max-Planck-Institut für Quantenoptik, Munich

Johannes Gutenberg-Universität, Mainz, Germany





# Outline

#### Introduction

- •SF-Mott transition a reminder
- Tonks-Girardeau gas in an optical lattice (Nature in press)
- Conclusion and outlook

# Status of the Experiments in Mainz

After disentangling classical objects...



And rather not wanting to speak, hear or see anything about the move...



#### The Experiment Finally Moves to Mainz



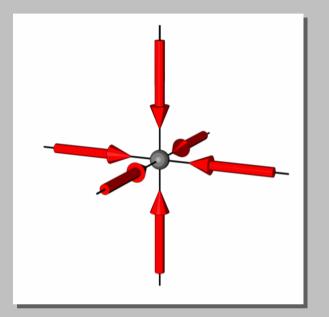
November 26, 2003

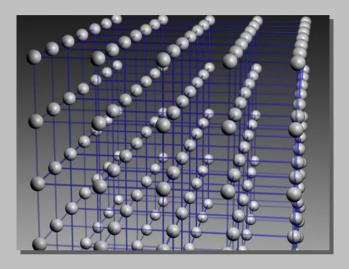


#### **Current Status of Experiments**

- BEC machine operational
- 3D Lattices almost completed and gearing up for new round of experiments

#### **3D Lattice Potential**





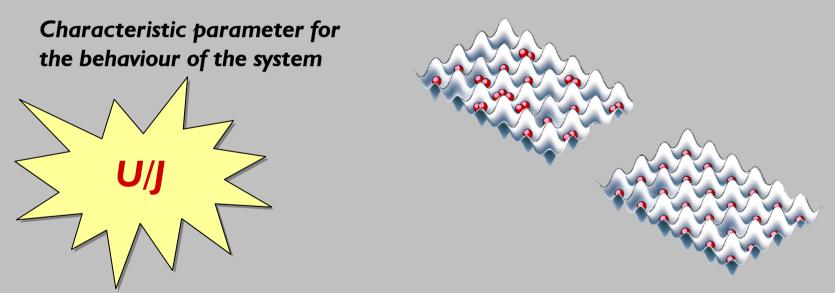
- Resulting potential consists of a simple cubic lattice
- •BEC coherently populates more than 100,000 lattice sites

# $V_0$ up to 40 $E_{recoil}$ ω<sub>r</sub> up to 2π × 45 kHz

n ≈ 1-5 atoms on average per site

#### **The SF-Mott Insulator Transition**

$$H = -J\sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \frac{1}{2}U\sum_i \hat{n}_i(\hat{n}_i - 1)$$



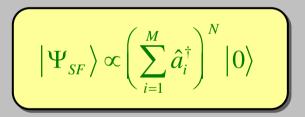
M. Greiner et al., Nature, 415, 39 (2002)

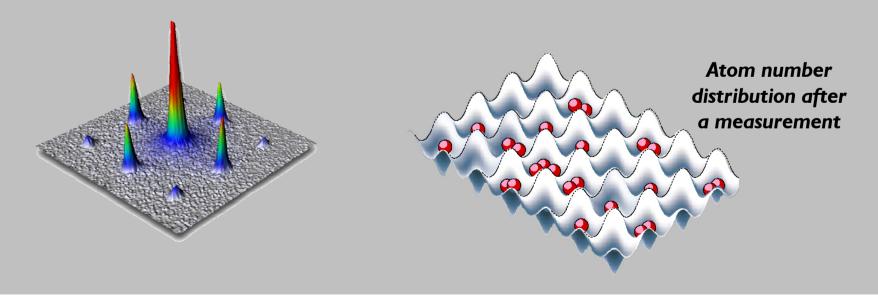
D. Jaksch et al. *PRL*, M. Fisher et al. *PRB*, R. Roth & K. Burnett, K. Braun-Munzinger, B. Svistunov et al., M. Lewenstein, L. Santos et al. M. Kasevich, Yale, W.D. Phillips, NIST, T. Esslinger ETHZ

# Superfluid Limit

$$H = -J\sum_{i,j} \hat{a}_i^{\dagger} \hat{a}_j + \frac{1}{2}U\sum_i \hat{n}_i(\hat{n}_i - 1)$$

Atoms are delocalized over the entire lattice ! Macroscopic wave function describes this state very well.

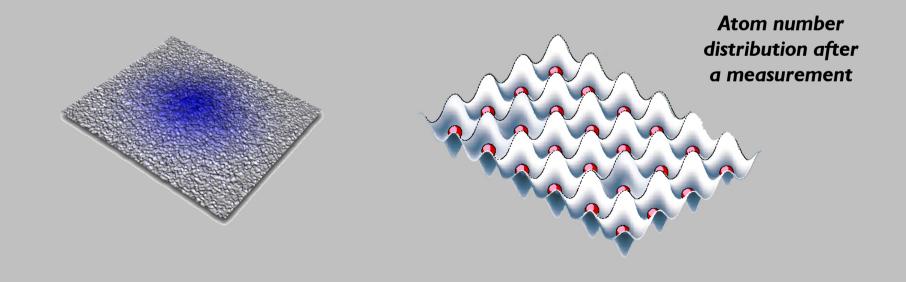




#### "Atomic Limit" of a Mott-Insulator

$$H = -J\sum_{i,j} \hat{a}_{i}^{\dagger} \hat{a}_{j} + \frac{1}{2}U\sum_{i} \hat{n}_{i}(\hat{n}_{i} - 1)$$

Strong repulsion between atoms leads to a kind of "fermionization" Repulsion mimics Pauli principle, but connection still vague



# Short Resun

APRIL 2004

Kee

#### **Quantum Inform**

- **Spin depenc** O. Mandel et a
- Collaps and M. Greiner et
- Controlled interaction O. Mandel et a

#### Atomic/Molecula

- Entangleme properties A. Widera et a
- State Selectiv T. Rom et al. (



#### ntum register

tt State

#### rray – controllable Ising

#### of atomic scattering

### The Tonks-Girardeau Gas – A Fermionized 1D Quantum Gas -

<u>Requirements (1):</u> ID bosonic quantum gas, tightly confined in two dimensions and only weakly confined along the axial direction

In Experiments here: aspect ratio typically 100-200

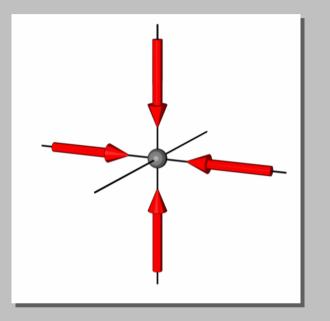
**Experiments with ID condensates:** 

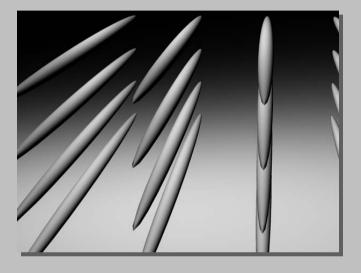
A. Goerlitz et al., PRL (2001), F. Schreck et al. PRL (2001), M. Greiner et al. PRL (2001)

more recently:

H. Moritz et al., PRL (2003), B. Laburthe Tolra et al., cond-mat (2003)

## **2D Lattice Potential**





- Resulting potential consists of an array of tightly confing potential tubes
- BEC is split into up to 10,000 ID quantum gases (radial motion confined to zero point oscillations)

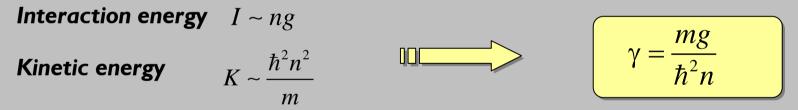
 $V_0$  up to 30  $E_{recoil}$  $\omega_r$  up to  $2\pi \times 35$  kHz  $n \approx$  up to 20 atoms per tube

#### Tonks-Girardeau Gas

<u>Requirements (2):</u> Strong repulsive interactions between atoms

$$\left[\gamma \approx I \,/\, K \gg 1\right]$$

#### Homogeneous case



D.S. Petrov et al. PRL (2000), M. Olshanii PRL (1998), V. Dunjko & M. Olshanii PRL (2001), M.D. Girardeau & E.M. Wright, Laser Physics (2001)

General Theory of "Luttinger Liquids" (see work of Haldane) can be applied to these quantum gases for arbitrary  $\gamma$ 

#### **Tonks-Girardeau Gas - Fermionization**

In ID for strongly interacting bosons, the many-body wave function can be mapped on to the one of non-interacting fermions.

(M.D. Girardeau, J. Math. Phys. 1960) This lies at the heart of a TG gas!

$$\Psi_B(x_1,\ldots,x_N) = \left|\Psi_F(x_1,\ldots,x_N)\right|$$

For example:

$$\Psi_B(x_1,\ldots,x_N) = \left| \det \left[ \varphi_i(x_j) \right] \right| \qquad i,j=1\ldots N$$

• Slater determinant ensures that two particles cannot be placed at the same position in space!

Absolute value ensures symmetrization

#### **Bosons behave like Fermions – Not Quite**

**Density distribution:** 

$$\left|\Psi_{B}(x)\right|^{2} = \left|\Psi_{F}(x)\right|^{2}$$

identical to the one of free fermions! (absolute value of det does not matter)

**Correlation function:** 

$$g^{(1)}(x) = \left\langle \Psi_{B}^{\dagger}(0) \Psi_{B}(x) \right\rangle \neq \left\langle \Psi_{F}^{\dagger}(0) \Psi_{F}(x) \right\rangle$$

different to the one of free fermions! (absolute value of det matters)

Momentum Distribution:

$$n(p) \propto \int e^{-ipx} g^{(1)}(x) dx$$

different to the one of free fermions! (FT of correlation function) n(p) Fermionized Bosons Fermions

Momentum distribution is characteristic for a Tonks-Girardeau gas!

### Status of Experiments

So far, experiments in 2D optical lattices have achieved  $\gamma \approx 0.5$ -1,

Still ID mean-field regime (see H. Moritz et al. PRL (2003)), allthough correlations begin to be modified (see B. Laburthe Tolra et al. cond-mat/0312003)

$$\gamma = \frac{mg}{\hbar^2 n}$$

#### Ways to increase y:

I. Increase Interaction strength

$$g = 2 a \hbar \omega_{\perp}$$

- 2. Decrease density
- 3. Increase of mass

#### **Increasing the Mass**

Addition of lattice along the axial direction leads to an increase in the effective mass m\*!

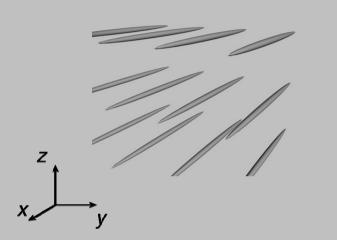
However, in order to apply Fermionization, we need to work in a regime, where:

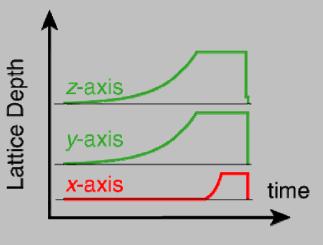
(exp. with high filling fraction T. Stöferle et al., Phys. Rev. Lett. (2004)

Tonks-Parameter in a lattice:

$$\gamma = U / J$$

### Experimental Sequence to Prepare the 1D Quantum Gases





- (1) Create array of ID quantum gases
- (2) Add lattice along axial direction

#### **Experimental parameters**:

 $V_0(2D)$  approx 27  $E_r$ 

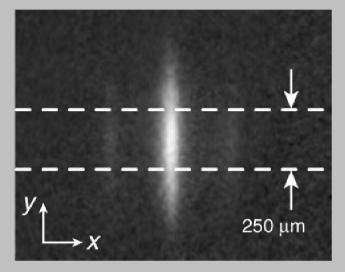
 $V_{ax} = 0-19 E_{r}$ 

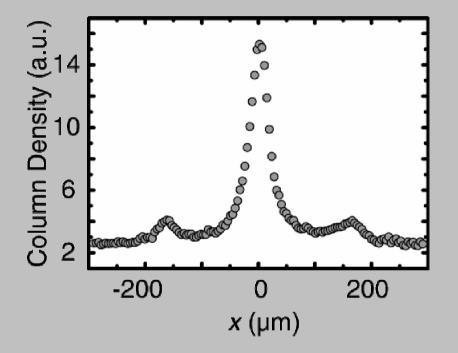
Lattice Wavelengths 825 nm

Atom number <  $3-4 \times 10^4$ Harmonic confinements:  $\omega_{\perp} = 2\pi \times 60 \,\text{Hz}$  $\omega_{\perp} = 2\pi \times 35 \,\text{kHz}$ 

### **Typical Absorption Images After Time Of Flight**

Observe fast expansion in radial direction





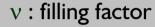
Due to the low atom number we average horizontal profiles within the white dashed lines.

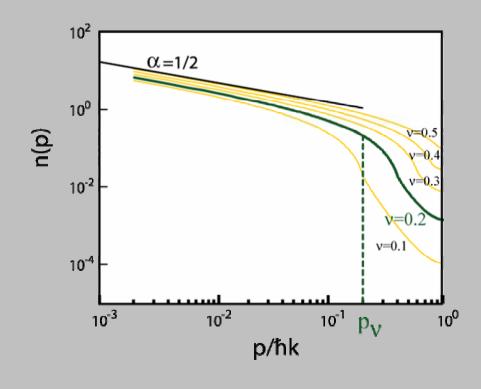
Challenge: Fully explain momentum distributions!

## Momentum Distribution of a (Lattice) 1D Gas

Important momentum scale (1/average interparticle spacing):

$$p_{\nu} = \hbar \times \frac{2\pi\nu}{\lambda}$$





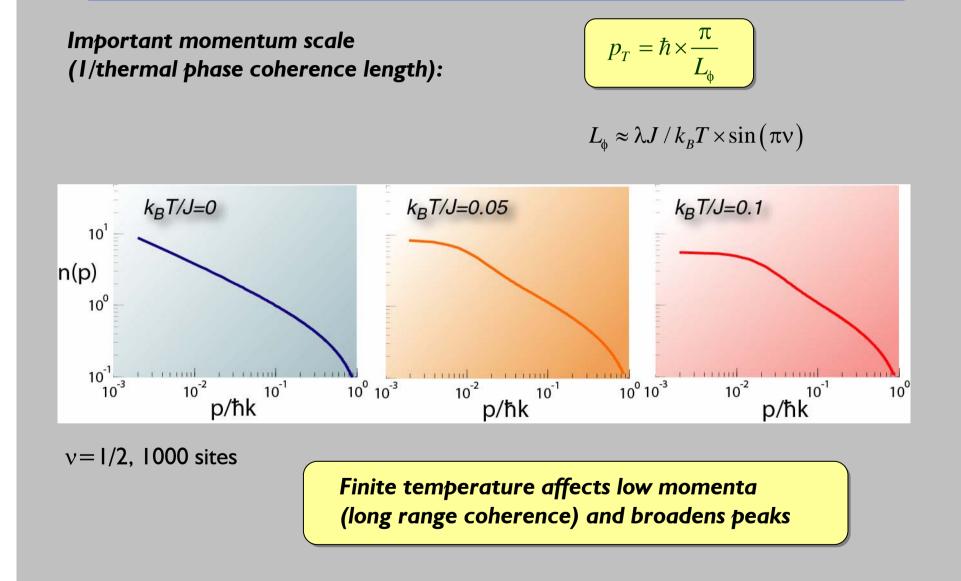
(a) For  $p \ll p_v$  the slope tends to 1/2

$$n(p) \propto \frac{1}{\sqrt{p}}$$

(b) For  $p \gg p_v$  the momentum distribution is affected by short range correlations, which tend to **increase** the slope

cp. M. Olshanii, PRL **91** (2003), G.E. Astrakharchik & S. Giorgini Phys. Rev. A (2003)

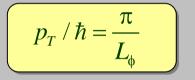
#### Finite Temperature Effects in a (lattice) 1D gas



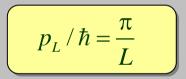
### **Summary of Important Momentum Scales**

$$\left( p_{\nu} / \hbar = \frac{2\pi\nu}{\lambda} \approx n \approx k_{F} \right)$$

Short range – long range correlations (change slope)



Thermal effects (broaden momentum peaks)



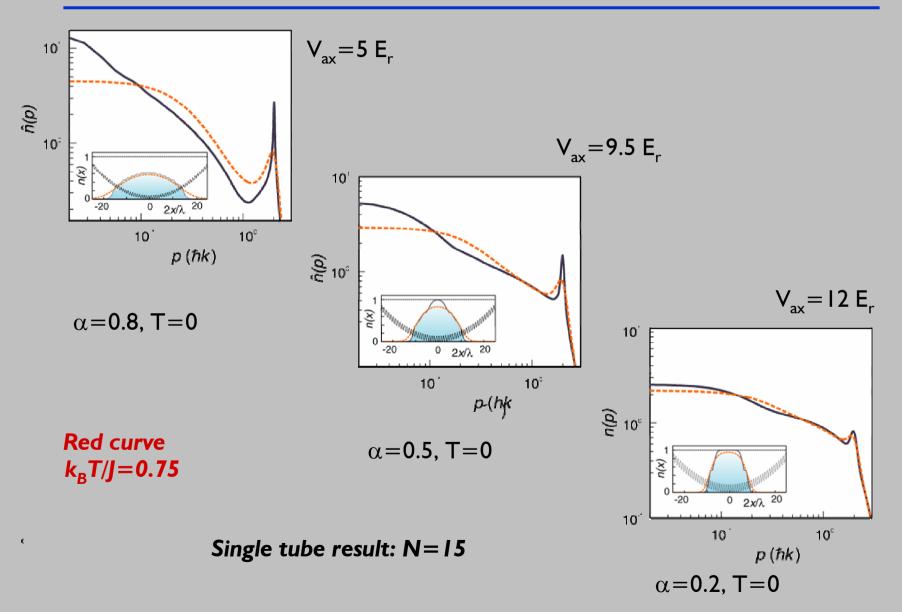
Finite size effects

For our experimental parameters, we find:

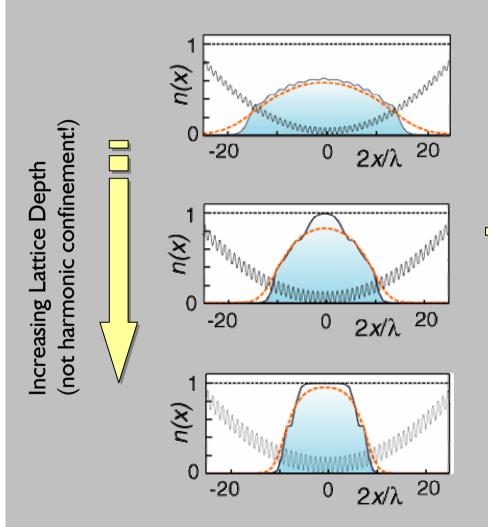
$$p_L < p_T \sim p_v$$

Finite size effects are dominated by finite temperature effects!

Momentum & Density Distribution for a Fermionized 1D (lattice) gas



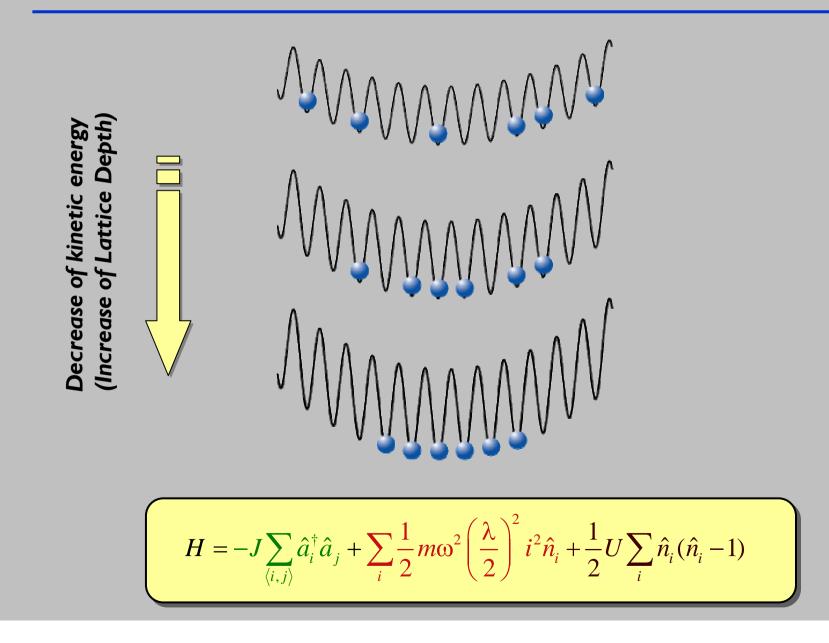
#### Increase of Lattice Depth Changes Filling Factor in the Inhomogeneous System



Even for  $U \rightarrow \infty$  the system spreads out due the kinetic energy /!

➡ If /decreases (deeper lattice), the system shrinks until a Mott state with n=1 is formed in the center!

Fermionization describes all filling factor regimes up to  $n \le I$ , provided  $\gamma >> 1$  !



### Averaging over the Different 1D Gases

#### Atom number in potential tube i,j

$$N_{i,j} = N_{0,0} \left( 1 - \frac{5}{2\pi} \frac{N}{N_{0,0}} (i^2 + j^2) \right)^{3/2}$$

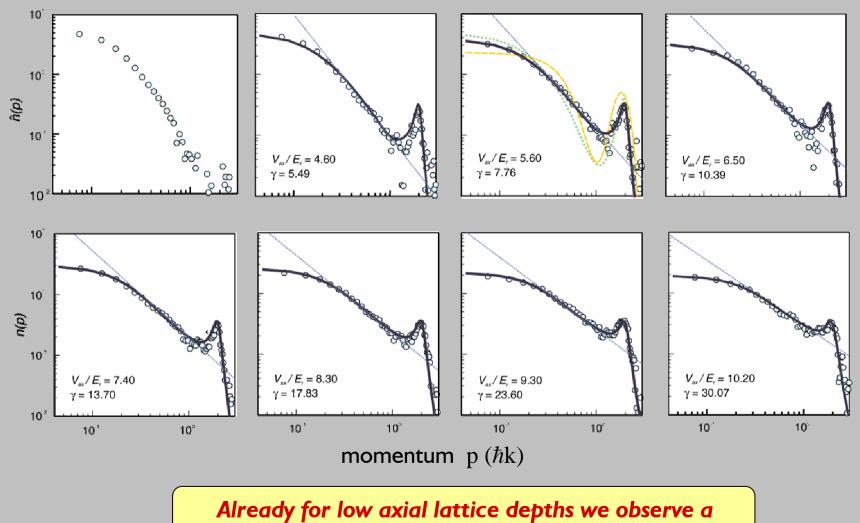
#### Probability for finding tube with M atoms

$$P(M) = \frac{2}{3} \frac{1}{N_{0,0}^{2/3} M^{1/3}}, M \le N_{0,0}$$

 $N_{0.0}$  atom number in central tube !

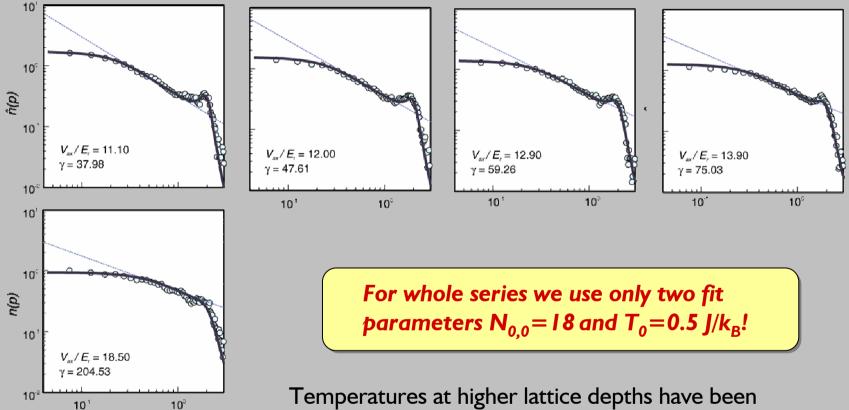
We use this probability distribution to average over the momentum distributions of different tubes.

### **Comparison Experiment-Theory**



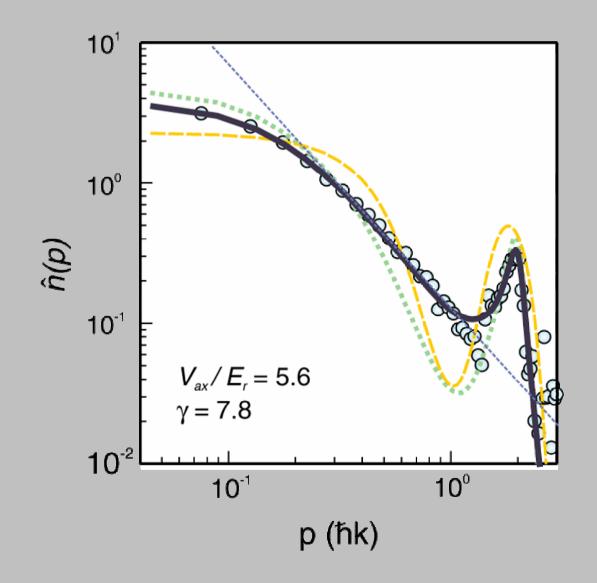
pronounced power-law decay with slopes <2

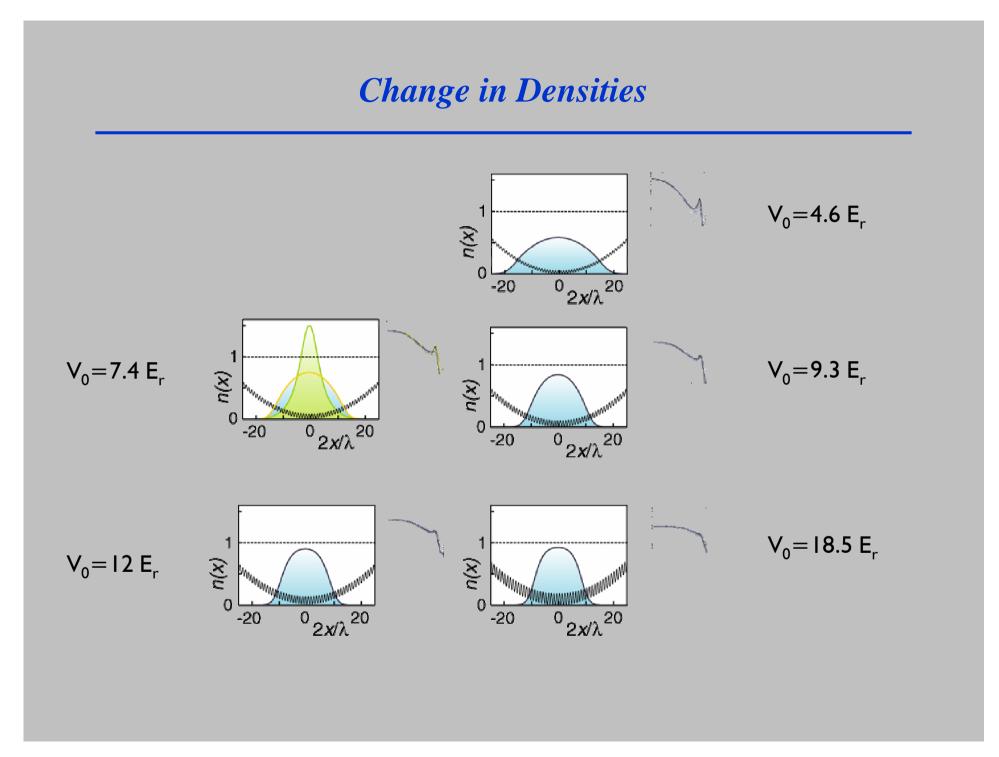
### **Comparison Experiment-Theory (2)**



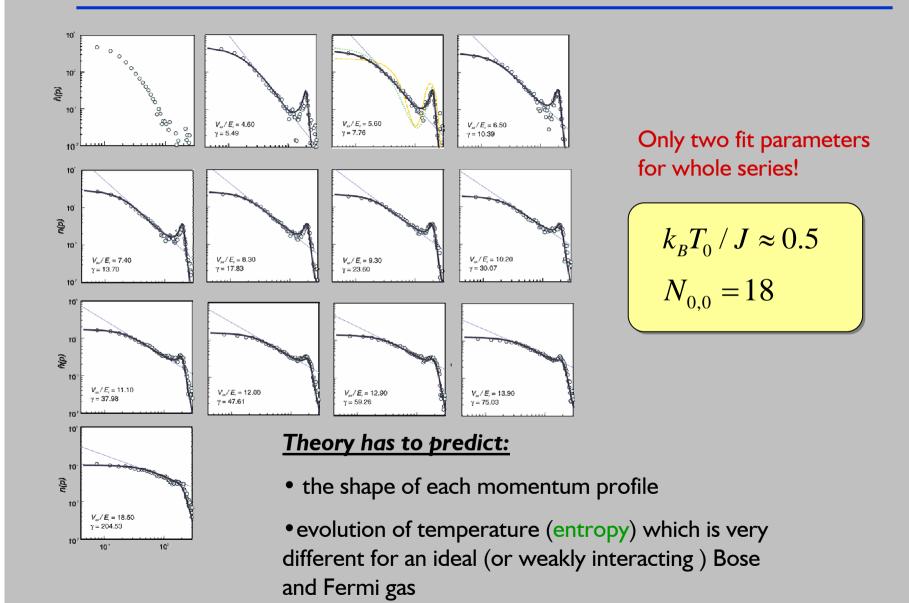
calculated from  $T_0$  assuming an adiabatic evolution (conservation of entropy) of the system!

# **Example of Momentum Profile**





### **Comparison Theory-Experiment (All Series)**



### Conclusion & Outlook - Fermionization -

#### **ID** Quantum gases

• We have been able to enter the Tonks-Girardeau regime in a 2D array of one-dimensional quantum gases

• Increase in effective mass good way to increase interactions

• For Fermionization to be applicable it is however important to work at low filling factors

•We observe excellent agreement with the theory based on a fermionization approach

First quantitative comparison of momentum distribution with theory

•Good agreement has allowed us to determine temperature of the quantum gases