
Tonks Girardeau Gas in an Optical Lattice Tonks Girardeau Gas in an Optical Lattice 

Experiment:

Olaf Mandel, Artur Widera, Tim Rom, 
Thorsten Best, Simon Fölling, 

Markus Greiner
T. W. Hänsch & Immanuel Bloch

Ludwig-Maximilians-Universität & Max-Planck-Institut für Quantenoptik, Munich

Johannes Gutenberg-Universität, Mainz, Germany

funding:
€ DFG, EU, 
Max-Planck Gesellschaft
$ AFOSR

Theory:

Belén Paredes, Valentin Murg
Gora Shlyapnikov & Ignacio Cirac

www.physik.uni-mainz.de/quantum



Outline

•Introduction

•SF-Mott transition – a reminder

•Tonks-Girardeau gas in an optical lattice
(Nature in press)

•Conclusion and outlook



Status of the Experiments in Mainz

After disentangling classical objects...
And rather not wanting to speak, 
hear or see anything about the 
move...



The Experiment Finally Moves to Mainz

November 26, 2003

Current Status of Experiments

•BEC machine operational

•3D Lattices almost completed and gearing up for new round of 
experiments



3D Lattice Potential

•Resulting potential consists of a simple cubic lattice 

•BEC coherently populates more than 100,000
lattice sites

V0 up to 40 Erecoil

ωr up to 2π × 45 kHz

n ≈ 1-5 atoms on average          
per site



The SF-Mott Insulator Transition
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D. Jaksch et al. PRL, M. Fisher et al. PRB, R. Roth & K. Burnett, K. 
Braun-Munzinger, B. Svistunov et al., M. Lewenstein, L. Santos et al.
M. Kasevich, Yale, W.D. Phillips, NIST, T. Esslinger ETHZ

M. Greiner et al., Nature, 415, 39 (2002)

Characteristic parameter for
the behaviour of the system

U/J



Superfluid Limit
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Atoms are delocalized over the entire lattice !
Macroscopic wave function describes this state very well.

Atom number 
distribution after 
a measurement 



“Atomic Limit“ of a Mott-Insulator
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Strong repulsion between atoms leads to a kind of „fermionization“

Repulsion mimics Pauli principle, but connection still vague

Atom number 
distribution after 
a measurement



Short Resume of Work with the Mott State

Quantum Information applications – The Mott state as a quantum register

• Spin dependent potentials for individual atoms
O. Mandel et al., PRL 91, 010407 (2003)

• Collaps and revival of the matter wave field of a BEC
M. Greiner et al., Nature, 419, p. 51, 2002.

• Controlled collisions – massively parallel quantum gate array – controllable Ising 
interaction
O. Mandel et al. Nature, 425, p. 937, (2003)

Atomic/Molecular Physics

• Entanglement Interferometry – Precision measurement of atomic scattering 
properties
A. Widera et al., PRL 92, 160406 (2004)

• State Selective Production of Molecules in Optical Lattices
T. Rom et al. (submitted)



The Tonks-Girardeau Gas 
– A Fermionized 1D Quantum Gas -

Requirements (1): 1D bosonic quantum gas, tightly confined in two 
dimensions and only weakly confined along the axial direction  

⊥µ ω

Experiments with 1D condensates: 
A. Goerlitz et al., PRL (2001), F. Schreck et al. PRL (2001), M. Greiner et al. PRL (2001) 

more recently:
H. Moritz et al., PRL (2003), B. Laburthe Tolra et al., cond-mat (2003)

In Experiments here: aspect ratio typically100-200 

d axT T N< ≈ ω



2D Lattice Potential

• Resulting potential consists of an array of 
tightly confing potential tubes

• BEC is split into up to 10,000
1D quantum gases
(radial motion confined to zero point 
oscillations)

V0 up to 30 Erecoil

ωr up to 2π × 35 kHz

n ≈ up to 20 atoms per 
tube



Tonks-Girardeau Gas
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Requirements (2): Strong repulsive interactions between atoms
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Homogeneous case

D.S. Petrov et al. PRL (2000), M. Olshanii PRL (1998), 
V. Dunjko & M. Olshanii PRL (2001), M.D. Girardeau & E.M. Wright, Laser Physics (2001)

General Theory of „Luttinger Liquids“ (see work of Haldane) can be applied 
to these quantum gases for arbitrary γ



Tonks-Girardeau Gas - Fermionization

In 1D for strongly interacting bosons, the many-body wave function can be 
mapped on to the one of non-interacting fermions.

( ) ( )1 1, , , ,B N F Nx x x xΨ = Ψ… …

For example: 

( ) ( )1, , det , 1B N i jx x x i j N⎡ ⎤Ψ = ϕ =⎣ ⎦… …

•Slater determinant ensures that two particles cannot be placed at 
the same position in space!

•Absolute value ensures symmetrization

(M.D. Girardeau, J. Math. Phys. 1960) This lies at the heart of a TG gas!



Bosons behave like Fermions – Not Quite

Density distribution: ( ) ( )2 2
B Fx xΨ = Ψ

identical to the one of free fermions! 
(absolute value of det does not matter)

Correlation function: ( ) ( ) ( ) ( ) ( )(1) † †0 0
B FB Fg x x x= Ψ Ψ ≠ Ψ Ψ

different to the one of free fermions! 
(absolute value of det matters)

different to the one of free 
fermions!
(FT of correlation function)

Momentum Distribution: ( )(1)( ) ipxn p e g x dx−∝ ∫

Momentum distribution is characteristic 
for a Tonks-Girardeau gas!



Status of Experiments

So far, experiments in 2D optical lattices have achieved γ≈0.5-1,

Still 1D mean-field regime (see H. Moritz et al. PRL (2003)), allthough 
correlations begin to be modified 
(see B. Laburthe Tolra et al. cond-mat/0312003)
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1. Increase Interaction strength

2. Decrease density 

2g a ⊥= ω

n

Ways to increase γ:

m3.     Increase of mass



Increasing the Mass

Addition of lattice along the axial direction leads to an 
increase in the effective mass m*!

However, in order to apply Fermionization, we need to work in a 
regime, where:

1ν ≤

Tonks-Parameter in a lattice:

/U Jγ =

(exp. with high filling fraction T. Stöferle et al., Phys. Rev. Lett. (2004) 



Experimental Sequence to Prepare 
the 1D Quantum Gases

(1) Create array of 1D quantum 
gases

(2) Add lattice along axial direction

Experimental parameters:

V0 (2D) approx 27 Er

Vax =0-19 Er

Lattice Wavelengths 825 nm

Atom number < 3-4×104

Harmonic confinements:
2 60 Hzaxω = π×

2 35kHz⊥ω = π×



Typical Absorption Images After Time Of Flight

Due to the low atom number we 
average horizontal profiles within  
the white dashed lines.

Challenge: 
Fully explain momentum distributions!

Observe fast expansion 
in radial direction



Momentum Distribution of a (Lattice) 1D Gas 

Important momentum scale 
(1/average interparticle spacing): 

2pν

πν
= ×

λ

(a) For p pν the slope tends to 1/2

1( )n p
p

∝

(b) For p pν the momentum distribution
is affected by short range correlations, 
which tend to increase the slope

ν : filling factor

cp.  M. Olshanii, PRL 91 (2003), 
G.E. Astrakharchik & S. Giorgini 
Phys. Rev. A (2003) 



Finite Temperature Effects in a (lattice) 1D gas

Important momentum scale 
(1/thermal phase coherence length):

Tp
Lφ

π
= ×

( )/ sinBL J k Tφ ≈ λ × πν

ν=1/2, 1000 sites
Finite temperature affects low momenta 
(long range coherence) and broadens peaks



Summary of Important Momentum Scales

2/ Fp n kν
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Short range – long range correlations 
(change slope)

Thermal effects 
(broaden momentum peaks)

Finite size effects

For our experimental parameters, we find:

L Tp p pν< ∼

Finite size effects are dominated by
finite temperature effects!



Momentum & Density Distribution 
for a Fermionized 1D (lattice) gas 

Single tube result: N=15

Vax=5 Er

Vax=9.5 Er

Vax=12 Er
α=0.8, T=0

α=0.2, T=0

α=0.5, T=0
kBT/J=0.75
Red curve



Increase of Lattice Depth Changes Filling Factor 
in the Inhomogeneous System
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Even for the system 
spreads out due the kinetic energy J !

If J decreases (deeper lattice), the system 
shrinks until a Mott state 
with n=1 is formed in the center!

Fermionization describes all 
filling factor regimes up to 
n≤1, provided γ>>1 !

U → ∞



Simple Picture for Change in Filling Factor
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Averaging over the Different 1D Gases

Atom number in potential tube i,j

( )
3/ 2

2 2
, 0,0

0,0

51
2i j

NN N i j
N

⎛ ⎞
= − +⎜ ⎟⎜ ⎟π⎝ ⎠

Probability for finding tube with M atoms

( ) 0,02/3 1/3
0,0

2 1 ,
3

P M M N
N M

= ≤

N0,0 atom number in central tube !

We use this probability distribution to average over 
the momentum distributions of different tubes. 



Comparison Experiment-Theory

momentum  p ( k)

Already for low axial lattice depths we observe a 
pronounced power-law decay with slopes <2



Comparison Experiment-Theory (2)

For whole series we use only two fit 
parameters N0,0=18 and T0=0.5 J/kB!

Temperatures at higher lattice depths have been 
calculated from T0 assuming an adiabatic evolution 
(conservation of entropy) of the system!



Example of Momentum Profile



Change in Densities 

V0=4.6 Er

V0=9.3 Er

V0=18.5 Er

V0=7.4 Er

V0=12 Er



Comparison Theory-Experiment (All Series)

Only two fit parameters 
for whole series!

0 / 0.5Bk T J ≈

0,0 18N =

Theory has to predict:

• the shape of each momentum profile

•evolution of temperature (entropy) which is very
different for an ideal (or weakly interacting ) Bose 
and Fermi gas



Conclusion & Outlook
- Fermionization -

1D Quantum gases

• We have been able to enter the Tonks-Girardeau regime
in a 2D array of one-dimensional quantum gases

•Increase in effective mass good way to increase interactions

•For Fermionization to be applicable it is however important 
to work at low filling factors

•We observe excellent agreement with the theory based on 
a fermionization approach 

•Good agreement has allowed us to determine temperature 
of the quantum gases

First quantitative comparison of momentum 
distribution with theory


