How cold atoms live in (and escape from) 1D

Andrew F. Ho(1), Miguel A. Cazalilla(2) & Thierry Giamarchi(3)

(1) Theory Group, University of Birmingham (UK)
(2) Donostia Int’l Physics Center (DIPC), San Sebastian (Spain)
(3) École de Physique, University of Geneva (Switzerland)
The 1D Cold Atom Zoo

• **Cold atoms on a chip:**

• **2D optical lattices:**

 [M. Greiner *et al.* *PRL* **87** (2001),
 H. Moritz, *PRL* **91** (2003),
 T. Stoferle *et al.* *PRL* **92** (2004)]
Outline:

• Life in one dimension: Luttinger liquids

• Life in a trap: bosonic atoms in a 1D box

• Experiments in 3D and 2D optical lattices

• Escaping from 1D: Phases of a 2D optical lattice
A crash course in Luttinger liquids (1)

• What is it made of? Bosons or Fermions?

“In 1D [...] the symmetry of the wave function cannot be tested by a continuous change of coordinates that exchanges particles without close approach (collision). Thus interaction and statistics effects cannot be separated.”

[FDM Haldane, PRL 47 (1981)]

• Collective modes exhaust the low-energy spectrum:

\[
H = \frac{\hbar}{2\pi} \int dx \left[v_J (\partial_x \phi)^2 + v_N (\partial_x \theta)^2 \right]
\]

phase stiffness
density stiffness
A crash course in Luttinger liquids (2)

• Collective modes have linear dispersion:

\[\omega(q) = v_s q \]

\[\omega(q \to 0) = v_s q \]

\[v_s = \sqrt{\frac{v_J}{v_N}} \]

\[K = \sqrt{\frac{v_J}{v_N}} \]

• The road map: range of \(K \) for the Bose-Hubbard model

\[K = 1 \text{ (Tonks gas)} \quad U/J = +\infty \]

\[K \gg 1 \text{ (Quasi-condensate)} \quad U/J \to 0 \]

When your cage is too small: mesoscopic LL’s

- Cold atoms on a chip:

- 2D Optical lattices:

\[N_0 \sim 10 \text{ to } 10^3 \text{ atoms} \]
A toy model: bosonic atoms in a 1D box

- **Phase correlations**: \(\langle \Psi^\dagger(x) \Psi(x') \rangle \approx \rho_0 \langle e^{-i\phi(x)} e^{i\phi(x')} \rangle \)

[Thermodynamic limit (T = 0)]

\[
g_1(x) = \langle \Psi^\dagger(x) \Psi(0) \rangle = \frac{A}{x^{1/2K}}
\]

\(x'/L = 0.5 \)

\(x'/L = 0.1 \)

\(\nabla = x \)

\(\bullet = x' \)

Momentum distribution in a 1D finite LL

- **Fermi Hubbard model** $U = +\infty$

 (away from half-filling)

$$\alpha_{\text{app}}(kL) = \frac{dn(k, L)}{d \ln kL}$$

$$n(k, L) \sim |k|^\alpha_{\text{app}}$$

$$\alpha(L \to \infty) = 0.125$$

[S. Eggert et al. PRL 26 (1996)]

- **Momentum distribution**: $n(p, L) = (\rho_0 L)^{1 - \frac{1}{2k}} I(pL)$
Experiments: 3D optical lattices

Superfluid to Mott insulator transition in a 3D optical lattice

Superfluid

Mott Insulator

Phase diagram:

Experiments:
3D optical lattices

Laser

[Laser]

[D. Jaksch et al. PRL 81 (1998)]

[MPA Fisher et al. PRB 40 (1989)]
Excitation spectrum: Bragg spectroscopy (3D)

• Bose-Hubbard model:

\[H_{BH} = \sum_{R,m} \left[-\frac{J_x}{2} \left(b_{m+1}^\dagger(R)b_m(R) + b_m^\dagger(R)b_{m+1}(R) \right) + \epsilon_m(R)b_m^\dagger(R)b_m(R) \right] - J \sum_{\langle R,R' \rangle,m} b_m^\dagger(R)b_m(R') + U \sum_{R,m} b_m^\dagger(R)b_m^\dagger(R)b_m(R)b_m(R) \]

\[J_\alpha \left(\frac{V_{0\alpha}}{E_R} \gg 1 \right) = \frac{4E_R}{\sqrt{\pi}} \left(\frac{V_{0\alpha}}{E_R} \right)^{1/4} \exp \left[-2 \left(\frac{V_{0\alpha}}{E_R} \right)^{1/2} \right] \]

\(J_\alpha \quad (\alpha = x, y, z) \)

Bragg spectrum for \(J_x = J \)

• 2-photon Bragg spectroscopy:

\[V_{0x} \rightarrow V_{0x}(t) = [V_{0x} + A_{\text{mod}} \sin (2\pi \nu_{\text{mod}} t)] \]

(i.e. modulate the axial optical potential)

[T. Stoferle et al. PRL 92 (2004)]
Exc. spectrum: Bragg spectroscopy ($J_x \gg J$)

- $V_{0x,y} = 30 E_R$:
 Bragg spectrum for $J_x \gg J$

Broad Spectrum: 1D SF (LL)

Discrete features: 1D MI

\[
\left(\frac{J_x}{J} \right)_{\text{max}} \approx 25
\]

[T. Stoferle et al. PRL 92 (2004)]
Excitation spectrum: deconfinement!

- **3D Superfluid**

- **1D Mott Insulator**

\[
\frac{J_x}{J} \approx 10
\]

- \(V_0 = 20 \, E_R \): 3D SF to 1D MI

By reducing the axial hopping intertube coherence is destroyed!!

[T. Stoferle et al. PRL 92 (2004)]
Where does the phase transition takes place?

Large quantum depletion!!

\[
\left(\frac{U}{zJ} \right)_{1D} \approx 1.9
\]

\[
\left(\frac{U}{zJ} \right)_{3D} \approx 5.8
\]

[C. Kollath et al. PRA 69 (2004)]

[T. Stoferle et al. PRL 92 (2004)]
2D optical lattices: effective low-energy theory

Through “bosonization”:

\[H_{\text{eff}} = \frac{\hbar v_s}{2\pi} \sum_R \int_0^L dx \left[\frac{1}{K} \left(\partial_x \theta_R(x) \right)^2 + K \left(\partial_x \phi_R(x) \right)^2 \right] \]

\[+ \frac{\hbar v_g u}{2\pi a^2} \sum_R \int_0^L dx \cos(2\theta_R(x) + \delta \pi x) \]

\[- \frac{\hbar v_g J}{2\pi a^2} \sum_{\langle R, R' \rangle} \int_0^L dx \cos(\phi_R(x) - \phi_{R'}(x)) \]

“Mott” potential: localizes atoms

Josephson coupling: delocalizes atoms

[AFH, MAC & T Giamarchi, PRL 92 (2004)]
2D optical lattices: phase diagram at $T = 0$

- Renormalization-group flow:

$$\frac{dg_F}{d\ell} = \frac{g_J^2}{K},$$
$$\frac{dg_J}{d\ell} = \left(2 - \frac{1}{2K}\right)g_J + \frac{g_J g_F}{2K},$$
$$\frac{dg_u}{d\ell} = (2 - K)g_u,$$
$$\frac{dK}{d\ell} = 4g_J^2 - g_u^2 K^2,$$
$$\ell \approx \ln \mu / T$$

[AFH, MAC & T Giamarchi, PRL 92 (2004)]
2D optical lattice of finite tubes: phase diagram

Array of atomic ‘quantum dots’

- Quantum phase Hamiltonian ($g_u = 0$):

$$H_{QP} = -E_J \sum_{\langle R, R' \rangle} \cos(\phi_{0R} - \phi_{0R'})$$

$$+ \frac{E_C}{2} \sum_R (N_R - N_0)^2 - \mu \sum_R N_R$$

$$E_J \approx JN_0^{1-\frac{1}{2\pi}}$$

$$E_C = \frac{\hbar \pi v_s}{KL}$$

- Incommensurate fillings:

[AFH, MAC & T Giamarchi, PRL 92 (2004)]
2D optical lattices: 3D Superfluid (BEC) phase

- **Mean-field theory**: condensate fraction $\psi_0^2(T = 0) \sim \rho_0 \left(\frac{J}{\mu} \right)^{1/(4K - 1)}$

- **Variational approach**: momentum distribution at $T = 0$

\[
\frac{n(Q, q)}{|w(Q)|^2} \simeq \psi_0^2 \delta(Q) \delta(q) + \frac{\pi b^2 \psi_0^2 / 2K}{\left[q^2 + (v_{\perp} Q / v_s)^2 \right]^{1/2}},
\]

transverse velocity:

\[v_{\perp} \sim \mu b (J/\mu)^{2K/(4K - 1)}/\hbar\]

- **RPA**: condensation temperature and excitation spectrum

\[
\left(\frac{2\pi T_c}{\hbar v_s \rho_0} \right)^{2 - 1/2K} = f(K) \frac{4J}{\hbar v_s \rho_0}
\]

\[\omega(Q)\]

\[\omega_+\]

\[\omega_-\] (Goldstone)

[AFH, MAC & T Giamarchi, PRL 92 (2004)]
• 2D optical lattice: phase diagram

![Phase diagram for 2D optical lattice showing Anisotropic 3D SF (BEC) phase with phase boundaries and labels for different γ values: (γ = +∞), (γ = 8), (γ = 3.5), (γ = 2).]