Photometric ages with Gaia
 Studying the Milky Way disc

Martin C. Smith
Shanghai Astronomical Observatory
KITP - 22nd March 2019

LAMOST

- A $4 m$ telescope with 4000 fibers across a 20 sq deg field of view, taking R ~ 2000 spectra covering approx. 3,500-9000 \AA

- In 2017 it completed first 5 -year survey, obtaining 1M stellar spectra per year, to $\mathrm{g} \sim 16$ th
- 3.9M unique stars with $\mathrm{S} / \mathrm{N}>20$
- 1.2M unique stars with $S / N>100$
- Latest public data release is DR4, which is $\sim 70 \%$ of the current internal release

http://dr4.lamost.org

- There are caveats (e.g. radial velocity offset) but pipelines are improving. Error estimation is now more reliable.

LAMOST

- A $4 m$ telescope with 4000 fibers across a 20 sq deg field of view, taking R ~ 2000 spectra covering approx. 3,500-9000 \AA
- In 2017 it completed first 5-year survey, obtaining 1 M stellar spectra per year, to $\mathrm{g} \sim 16$ th
- 3.9M unique stars with S/N > 20
- 1.2 M unique stars with $\mathrm{S} / \mathrm{N}>100$
- Latest public data release is DR4, which is $\sim 70 \%$ of the current internal release

http://dr4.lamost.org

- There are caveats (e.g. radial velocity offset) but pipelines are improving. Error estimation is now more reliable.

LAMOST chemistry

- Corrado Boeche applied his SP_Ace pipeline to LAMOST, which is based on general curves-of-growth method (Boeche et al. 2018)
- This provides similar precision to the standard LAMOST pipeline (LASP) but with the added benefit of reliable alpha-element abundance to ~ 0.1 dex (NB. alternative datadriven approaches exist, such as Xiang et al. 2017, Ho et al. 2017, Ting et al. 2017)

LAMOST chemistry

- Corrado Boeche applied his SP_Ace pipeline to LAMOST, which is based on general curves-of-growth method (Boeche et al. 2018)
- This provides similar precision to the standard LAMOST pipeline (LASP) but with the added benefit of reliable alpha-element abundance to ~ 0.1 dex (NB. alternative datadriven approaches exist, such as Xiang et al. 2017, Ho et al. 2017, Ting et al. 2017)

Comparison with APOGEE DR12

Great survey for ages

- Gaia+spectroscopy great for ages. Main-sequence stars are difficult, but good prospects for turn-off stars and giants
- Many papers using ages, such as Xiang et al. 2017, Sanders et al. 2018, Wu et al. 2018, etc...
- Paper analysing the dynamics and chemistry of the disc, using 125k stars (Vickers \& Smith 2018)

Disc evolution with LAMOST+Gaia

- Combine Gaia with LAMOST/RAVE to estimate ages for 125k stars (Vickers \& Smith, 2018, ApJ)
- Probe the chemodynamical evolution of the disc, looking at inside-out formation, heating and bulk flows
- Investigate radial migration through machine learning

Disc evolut ${ }^{10}$ [ramilural

- Combine Gaia with LAMOST/RAVE to estimate ages for 125k stars (Vickers \& Smith, 2018, ApJ)
- Probe the chemodynamical evolution of the disc, looking at inside-out formation, heating and bulk flows
- Investigate radial migration through machine learning

RAVE LAMOST
kers \& Smith (2018)

Can we avoid spectroscopy?

- Spectroscopy is extremely useful, but it is also expensive
- For many years people have been estimating metallicities from photometry, most-effectively through the uv-excess (e.g. Ivezic et al. 2008)
- If we can estimate metallicities, why can we not estimate ages?!
- Use subset with $\sim 10 \%$ ages from Vickers et al. (2018) to train a random forrest regression tool to calculate ages from photometry

Can we avoid spectroscopy?

Can we avoid spectroscopy?

- If we can estimate metallicities, why can we not estimate ages?!
- Use subset with ~10\% ages from Vickers et al. (2018) to train a random forrest regression tool to calculate ages from photometry

How well can we recover metallicities and ages?

Applications

- Using all-sky GALEX data gives us around 2 million turn-off stars with good ages (SDSS gives ~6M)
- If we want 6D phase-space we can cross-match GALEX and Gaia's onboard spectrograph RVS, giving around 0.5 million stars
- Other avenues not discussed
 here include the phasespace snail (more prominent in younger stars) \& substructures in action space

Spatial distribution

- Using Gaia+Galex can probe the extended solar neighbourhood
- When looking at ages can see clear flaring and/or stubby thick disc
ns
good ages (SDSS gives ~6M)

Radial migration

- If We winntan nhonon anono wor
Spatial distribution

cal
 Ga
 giv
 - Ott he sp pr sta in

Applications

Age-metallicity relation

- Using all-sky GA around 2 million t good ages (SDS
- If we want 6D ph can cross-match Gaia's onboard s giving around 0.5

- Other avenues not

Age-Metallicity relation

- By plotting the guiding centre radii we can see the effects which work to broaden this relation.

Apr

- Using all-sky C around 2 millio good ages (SL
- If we want 6D can cross-matc Gaia's onboarc giving around 0.5 million stars

Radial migration

- Here we show the age-metallicity plane for stars with $\mathrm{R}_{\mathrm{g}}=7 \mathrm{kpc}$.
- As expected, older stars are hotter in both J_{R} and J_{z}.
- However, plotting the ratio shows that the (probable) migrated stars have high values of J_{R} / J_{z}. Is this because migration preferentially occurs for stars with proportionally smaller J_{z} ?

Applications

- Using all-sky GALEX data gives us around 2 million turn-off stars with good ages (SDSS gives ~6M)
- If we want 6ח nhase-snace we

Simulation from Alex Pettitt

U-V plane

- Vertex deviation and complex substructure
- Spirals are able to match overall structure, but how much of substructure too?
- Hercules stream seems to bifurcate, showing signature in age but not [Fe/H]

- If we want 6n nhase-s

Simulation from Alex Pettitt

U-V plane

- Vertex deviation and complex substructure
- Spirals are able to match overall structure, but how much of substructure too?
- Hercules stream seems to bifurcate, showing signature in age but not $[\mathrm{Fe} / \mathrm{H}]$

Applications

- Using all-sky GALEX data gives us around 2 million turn-off stars with aood ades (SDSS aives ~6M)

Hercules stream

U-V plane

- Vertex deviation and complex substructure
- Spirals are able to match overall structure, but how much of substructure too?
- Hercules stream seems to bifurcate, showing signature in age but not $[\mathrm{Fe} / \mathrm{H}]$

LAMOST-2

- 5-year survey from Oct 2018 to Jun 2023. Continuation of LAMOST-1 survey, but with new medium resolution component.
- R ~ 7,500 for two windows: 496-533 nm (Mg Triplet, metal lines) \& 630-680 nm (Halpha, Li). Aim to get ~20 elemental abundances.
- Med-res: ~2 million stellar spectra (for $\mathrm{G}<15$) and ~ 0.2 million stars with time-domain spectra (60 epochs for $G<14$)
- Time-domain science: Variable stars and exoplanet host stars (Kepler/K2 \& TESS), star clusters, nebula regions (HII regions, SNR, PNe, etc), field binaries.

