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Why sweat the small stuff?

Dwarf galaxies are the building
blocks of more massive galaxies
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Dwarf galaxies can teach us about
star formation and feedback
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Missing Satellites Problem solved to M* ~ 105> Me

| ) A m——— Milky Way |
Bright Dwarfs: | "‘.‘ (classical satellites)

M, ~ 10° Mg ’ : ;
Myir = 1011 Mg | R '

Classical Dwarfs:
M, ~ 105 Mg
Mir ~ 1019 Mg
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Ultra-faint Dwarfs:
M, ~ 10*Mg
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Dwart galaxies can teach us about
dark matter

MSP: Missing Satellites Problem: why are there so few Galactic satellites?
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LCDM solution: something
prevents small halos from forming
galaxies, or can’t see them
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Dwart galaxies can teach us about
dark matter

MSP: Missing Satellites Problem: why are there so few Galactic satellites?

LCDM solution: something
prevents small halos from forming
galaxies, or can’t see them

- %+ - massfor galaxy formation
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Dwart galaxies can teach us about
dark matter

MSP: Missing Satellites Problem: why are there so few Galactic satellites?

LCDM solution: something | Alternative solution: Dark matter
prevents small halos from forming particle is warmer, so small halos
galaxies, or can’t see them themselves do not exist

hatlsthe minimum » ua . ».'-f'»:. |
"o+ - massfor galaxy formation” i
Lovell et a1 2()11"pred1cted inA — CDM 7?7 -



Dwarts with luminosities over nearly 5 orders of magnitude
occupy halos of strikingly similar mass: ~3 x 10° Me
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Selection Effect?

L 1 11111y

Uma Il yma I Dra g Car

100 s -1000’s o undetected
“stealth galaxies” in low-mass
halos? suiock et al. 2010

—

O
=

e
n
O
O
N
-
\
0
.
-

L1 1 1111l l IIIIIIII ] IIIIIIII l IIIIIII|
10%2 104 10° 106

Luminosity [Lg]

Strigari et al. 2008



Gaia and the Missing Satellites Problem

- Satellites spend most of their time at apocenter -

" Suggests large population of “missing”’ satellites |
“with R > 100 kpc }
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DWARF GALAXIES ON FIRE

Hopkins et al. 2014

‘“‘Feedback In Realistic Environments’>  Wheeler et al. 2015
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DWARF GALAXIES ON FIRE

oiie 3 Hopkins et al. 2014
‘“‘Feedback In Realistic Environments’>  Wheeler et al. 2015
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Typical (pre-FIRE) resolution: z=30.0
DM particle mass = 10° Mq

Star particle mass ~ 104 Mg
Spatial resolution = 100pc
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Typical (pre-FIRE) resolution: z=30.0
DM particle mass = 10° Mq

Star particle mass ~ 104 Mg
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High Resolution (Wheeler 2015):
DM particle mass = 1300 Mo
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DWARF GALAXIES ON FIRE

Hopkins et al. 2014

‘“‘Feedback In Realistic Environments’>  Wheeler et al. 2015

Typical (pre-FIRE) resolution:
DM particle mass = 105 Mo

Star particle mass ~ 104 Mg
Spatial resolution = 100pc

High Resolution (Wheeler 2015):
DM particle mass = 1300 Mo

Star particle mass ~ 250 Mo
Spatial resolution = 1pc

Highest Resolution (Wheeler 2018):

DM particle mass = 160 Mo
Star particle mass ~ 30 Mo
Spatial resolution = 0.1-0.4pc

arXiv:1812.02749

Wheeler et al. 2018b
z2=30.0

IONIZED GAS



log Number of Stars

Trouble with High Resolution: IMF Sampling

Massive star particle
treated as single stellar

population with
Kroupa 2001 IMF
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log Number of Stars

Trouble with High Resolution: IMF Sampling

0-01 Msun

1 Msun 100 Msun »'ﬂf

Kroupa 2001

log Mass of Stars

Massive star particle
treated as single stellar

population with
Kroupa 2001 IMF

Star particles < ~100
Mgun can no longer
represent complete
stellar population

Must stochastically
sample IMF, allowing
small fraction of
particles to represent a
discrete integer number
of massive stars



Mhato > 5x108 Mo
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Prediction: Galaxies in all halos

Wheeler et al. 2015 | i Y e Wheeler et al. 2018b



Prediction: Galaxies in all halos with Mpaio > 5x108 M

—— Garrison—Kimmel + 2014
Brook + 2014
m10q
ml0v
m09

Central Galaxies

Satellite Galaxies
mfm: 250 (M@)

Wheeler et al. 2015 Wheeler et al. 2018b



Prediction: Galaxies in all halos with Mpaio > 5x108 M

Testable prediction: Isolated classical dwarfs have their own ultra-faint satellites
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Prediction: Galaxies in all halos with Mpaio > 5x108 M

Testable prediction: Isolated classical dwarfs have their own ultra-faint satellites

Testable prediction: should be ubiquitous in the field - 100s around the MW!
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Prediction: Galaxies in all halos with Mpaio > 5x108 M

Testable prediction: Isolated classical dwarfs have their own ultra-faint satellites

Testable prediction: should be ubiquitous in the field - 100s around the MW!

10
—— Garrison—Kimmel + 2014
Brook + 2014
m10q
ml0v
m09

Central Galaxies

Satellite Galaxies
mfm: 250 (M@)

Still no minimum
mass for galaxy
formation

Wheeler et al. 2015 Wheeler et al. 2018b



Future Work: lower particle count limit
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Future Work: lower particle count limit

Wheeler et al. 2018b
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Higher mass dwarfs match observations
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Higher mass dwarfs match observations
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Higher mass dwarfs match observations

Testable prediction: many UFDs have extremely low SB -> Stealth galaxies!
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Many new objects at low SB discovered
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Many new objects at low SB discovered

Y Antlia 2
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Many new objects at low SB discovered

Y Antlia 2

Surface Brightness
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Many new objects at low SB discovered

Y Antlia 2

Surface Brightness

9
&
/9]
=
o
=
<
=
/]
B
<
s
(o
b
<
s

© MW Dwarfs
4+ DES Candidates |

101 L vl Ll L1l Ll ]

10° 10° 10* 10° 10° 10"
Stellar Mass (Mo)




Many new objects at low SB discovered

Y Antlia 2

Surface Brightness
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Dwart galaxies can teach us about dark matter

CCC: Dark matter-only simulations prédict steep central “cusp”, while some
dwarf galaxies have instead a flatter *“core™

Predicted-> “Cusp”

Observed -> “Core”

Radius
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Dwart galaxies can teach us about dark matter

CCC: Dark matter-only simulations prédict steep central “cusp”, while some
dwarf galaxies have instead a flatter “core”

LCDM solution: something heats up
dark matter in dwarf galaxiess Y

Predicted-> “Cusp”

Radius

Alternative solution: Dark matter
particle has some self-interaction cross
section

Vogelsberger et al. 2012



How the galaxy effects dark matter
through feedback

Gas driven away Gas cools & Force returns to
Dark matter ' from centre flows back in original

strength...

Gravitational force
insufficient
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... but is weaker at large
distances, so the particle
cannot be pulled back
to its old orbit.

Dense, star-

: Particle migrates
forming gas

outwards

T Process can repeat. Analytic arguments and simulations
show effect accumulates with each episode.

Pontzen & Governato 2014




Mpm ~ 1010 M at transition
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Mpm ~ 1010 M at transition

from inefficient to efficient
core formation _ P Ghn s

m09 (3e9M ) m10 (8e9M,)

SIDM predicts cores at
all halo masses

Radius

mll (lellM,) ml2v (6ellM,)
8 R -

10°

Radius Chan et al. 2015 Radius

| Radius

Vogelsberger et al. 2012

No cores predicted in ultra-faint dwarfs



Feedback can create ‘‘cores’ for range of
M=/ Mhalo
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Cores in dwarfs ( R
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Cores in dwarts
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At high resolution, small core visible in some UFDs
-> 100 pc-scale cores won’t break LCDM

NEFW fit

10
Radius (kpc)
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Dwart galaxies can teach us about reionization

all surviving halos

|
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Dwart galaxies can teach us about reionization

Cosmic reionization prevents
smallest halos from forming
stars
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Dwart galaxies can teach us about reionization

Cosmic reionization prevents
smallest halos from forming
stars
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Dwart galaxies can teach us about reionization

Cosmic reionization prevents
smallest halos from forming
stars

This may help “solve” the
missing satellites problem
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Ultra-faint MW sats have ancient stellar
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Reionization or infall?




Unlikely all UFDs fell into Milky Way by z=1
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Redshift
10.0 5. 3.0 2.0 1.0

l

o)
2
7
(+]
=
L]
<
—
Q
)
N

Cumulative Fractional SFH

10 g 6 A 5 0
10 [ ]
Halo Mass (M) Lookback Time (Gyr) wneeler et al. 2018b




' . Moster 2013 . RedShift
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Simulated UFDs all have SF shut
~down by z=2
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Simulated UFDs all have SF shut
~down by z=2
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Testable prediction: All UFDs, whether satellites or
isolated, will have uniformly ancient stellar populations
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Universal Mass Metallicity Relation For
Dwarfs?

MZR tor dwart galaxies universal
over dwarf galaxy types over 5
orders of magnitude in M*
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Universal Mass Metallicity Relation For
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Mass Metallicity Relation

- Observations may suggest
universal MZR at low
masses, or possible
flattening

MW dSphs Kirby + 2013

MW dIrrs Kirby + 2013

M31 dSphs Kirby + 2013
‘ M31 Dwarfs Vargas + 2014

10 10
M, (M,) Wheeler et al. 2018b




Mass Metallicity Relation

- Observations may suggest
universal MZR at low
masses, or possible
flattening

- First time highly )
resolved galaxies plotted

at this low of mass -
Yikes!

MW dSphs Kirby + 2013
MW dIrrs Kirby + 2013
M31 dSphs Kirby + 2013
M31 Dwarfs Vargas+ 2014
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Mass Metallicity Relation

Observations may suggest
universal MZR at low
masses, or possible
flattening

First time highly )
resolved galaxies plotted

at this low of mass -
Yikes!

At lowest masses, offset
only a few SNe

Missing physics in sims?
Pop III enrichment, yield
tables? MW nearby?

MW dSphs Kirby + 2013
MW dIrrs Kirby + 2013
M31 dSphs Kirby + 2013
M31 Dwarfs Vargas+ 2014
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Can presence of a massive neighbor enrich UFDs?

MW dSphs Kirby + 2013
MW dIrrs Kirby + 2013

M31 dSphs Kirby + 2013
‘ M31 Dwarfs Vargas+ 2014

’ : ‘ V Simulated MW sats




Can presence of a massive neighbor enrich UFDs?

2 i MW dSphs Kirby + 2013
Ran two MW-sims with el Jy 20
. NV dlrrs Kirby + 2013
— 880 ~4 ¥ M31 dSphs Kirby + 2013
mbal‘ — M@ tO Z : 05 ' ‘ M31 Dwarfs Vargas+ 2014
’ : ‘ V Simulated MW sats




Can presence of a massive neighbor enrich UFDs?

W - $ MW dSphs Kirby + 2013

Ran tWO M Slms Wlth : MW dIrrs Kirby + 2013
— 880 4 5 ) M31 dSphs Kirby + 2013

mbar - M© tO Z ) 2 . ‘ M31 Dwarfs Vargas+ 2014

Look at galaxies that form
100% of their stars by z =
9.8,7,6,5
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By z = 5, some UFDs
enriched to observed levels N MW dphs Kisby + 2013
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But not massive dwarfs - may ¢ V Simulated MW sats
signal serious problem with ‘ -
Type 11 yield tables or lack of
Pop 111 SF

Testable prediction(?) Isolate UFDs will have higher [Fe/H] than sats
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Conclusions

Using the highest resolution cosmological simulations (run to z=0) to date, we
predict UFDs form in all DM halos M., > 5 x 108 Me, including as sats of dwarfs

No prediction for minimum halo mass for galaxy formation

These objects have extremely low surface brightnesses and so may only be visible
with the next generation telescopes

Baryonic effects can create cores in halos with 1010 Me < Myir < few x 1011 Mo,
and only tiny cores in UFDs (if any)

Galaxies in DM halos with M, <~ 3 x 10° Me have uniformly ancient stellar
pops, suggesting quenching due to reionization

MZR at extremely low mass deviates from observations. For lowest mass UFDs,
likely need a massive neighbor. More work needed at higher mass - better Type
IT SNe yields? Pop III star formation?
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