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Why sweat the small stuff?
Dwarf galaxies are the building 
blocks of more massive galaxies
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1000s of dark matter subhalos ~ 50 dwarf satellite galaxies
MSP: Missing Satellites Problem

“If I ever hear anyone mention the missing satellites 
problem again, I’ll leave the room” - Carlos Frenk



Missing Satellites Problem solved to M* ~ 105 M⦿

AM extrapolation from 
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MSP: Missing Satellites Problem: why are there so few Galactic satellites?

WDM

LCDM solution: something 
prevents small halos from forming 
galaxies, or can’t see them

Alternative solution: Dark matter 
particle is warmer, so small halos 
themselves do not exist

Lovell et al. 2011

CDM

Dwarf galaxies can teach us about 
dark matter

What is the minimum 
mass for galaxy formation 
predicted in               ? Λ − CDM



Dwarfs with luminosities over nearly 5 orders of magnitude 
occupy halos of strikingly similar mass: ~3 x 109 M⦿

Strigari et al. 2008



Strigari et al. 2008

100’s - 1000’s of undetected 
“stealth galaxies” in low-mass 

halos? Bullock et al. 2010

Selection Effect?



Gaia and the Missing Satellites Problem

Pericenter Apocenter

Satellites spend most of their time at apocenter 

Should be a peak near f = 1

f Fritz et al. 2018

Suggests large population of “missing” satellites 
with R > 100 kpc
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Typical (pre-FIRE) resolution: 
DM particle mass = 105 M⦿ 

Star particle mass ~ 104 M⦿    
Spatial resolution = 100pc
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Highest Resolution (Wheeler 2018): 
DM particle mass = 160 M⦿ 

Star particle mass ~ 30 M⦿    
Spatial resolution = 0.1-0.4pc

High Resolution (Wheeler 2015): 
DM particle mass = 1300 M⦿ 

Star particle mass ~ 250 M⦿    
Spatial resolution = 1pc
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Kroupa 2001
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Kroupa 2001 IMF
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Trouble with High Resolution: IMF Sampling

Kroupa 2001

Massive star particle 
treated as single stellar 
population with 
Kroupa 2001 IMF

Star particles < ~100 
Msun  can no longer 
represent complete 
stellar population

Must stochastically 
sample IMF, allowing 
small fraction of 
particles to represent a 
discrete integer number 
of massive stars
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Prediction: Galaxies in all halos with Mhalo > 5x108 M⦿

Testable prediction: Isolated classical dwarfs have their own ultra-faint satellites
Testable prediction: should be ubiquitous in the field - 100s around the MW!

Still no minimum 
mass for galaxy 
formation
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Wheeler et al. 2018b

Future Work: lower particle count limit

10 kpc
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Higher mass dwarfs match observations

UNOBSERVABLE

Wheeler et al. 2018b
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Higher mass dwarfs match observations

Wheeler et al. 2018b
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Testable prediction: many UFDs have extremely low SB -> Stealth galaxies!



Many new objects at low SB discovered
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Many new objects at low SB discovered

Antlia 2
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Many new objects at low SB discovered

Antlia 2
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Many new objects at low SB discovered

Antlia 2

Could some of the DES dwarfs actually 
be more massive and have undetected 
stellar halos beyond observational limits? 

Wheeler et al. 2018b
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Radius

Predicted-> “Cusp”

Observed -> “Core”

CCC: Dark matter-only simulations predict steep central “cusp”, while some 
dwarf galaxies have instead a flatter  “core”

Vogelsberger et al. 2012
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LCDM solution: something heats up 
dark matter in dwarf galaxies

Alternative solution: Dark matter 
particle has some self-interaction cross 
section

SIDM

Dwarf galaxies can teach us about dark matter



Pontzen & Governato 2014

How the galaxy effects dark matter 
through feedback



MDM ~ 1010 M⦿ at transition 
from inefficient to efficient 
core formation

No cores predicted in ultra-faint dwarfs

TK Chan (UCSD)

Chan et al. 2015
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MDM ~ 1010 M⦿ at transition 
from inefficient to efficient 
core formation

No cores predicted in ultra-faint dwarfs

TK Chan (UCSD)

Chan et al. 2015
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SIDM predicts cores at 
all halo masses



DDiCintio et al. 2014
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Cores in dwarfs

Cusps down to 
at least 100pc in 
all galaxies with
M⋆/Mhalo < 10−4

~300pc core exists 
in our one galaxy 
with M⋆/Mhalo ∼ 10−3



At high resolution, small core visible in some UFDs
-> 100 pc-scale cores won’t break LCDM
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Dwarf galaxies can teach us about reionization

Bullock + 2000

Cosmic reionization prevents 
smallest halos from forming 
stars

This may help “solve” the 
missing satellites problem
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Dwarf galaxies can teach us about reionization

Bullock + 2000

Cosmic reionization prevents 
smallest halos from forming 
stars

This may help “solve” the 
missing satellites problem

What effect does it have on 
existing galaxies?Circular Velocity (km/s)
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Ultra-faint MW sats have ancient stellar 
populations

Reionization or infall?



Less than 1% probability 
that all 6 Brown et al. 
UFDs quenched by infall

Rodriguez-Wimberly et al. 2018

Unlikely all UFDs fell into Milky Way by z=1

Katy Rodriguez-
Wimberly (UCI)

Fell into 
MW

Fell 
into any 

host
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Simulated UFDs all have SF shut 
down by z=2
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Simulated UFDs all have SF shut 
down by z=2

Lookback Time (Gyr) Wheeler et al. 2018b
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Testable prediction: All UFDs, whether satellites or 
isolated, will have uniformly ancient stellar populations
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Mass Metallicity Relation

• At lowest masses, offset 
only a few SNe 

• Missing physics in sims? 
Pop III enrichment, yield 
tables? MW nearby?

• Observations may suggest 
universal MZR at low 
masses, or possible 
flattening

• First time highly 
resolved galaxies plotted 
at this low of mass - 
Yikes!

Wheeler et al. 2018b
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Simulated MW sats

Can presence of a massive neighbor enrich UFDs?

Ran two MW-sims with 
mbar = 880 M⦿ to z~4.5

Look at galaxies that form 
100% of their stars by z = 
9,8,7,6,5

By z = 5, some UFDs 
enriched to observed levels

But not massive dwarfs - may 
signal serious problem with 
Type II yield tables or lack of 
Pop III SF

Testable prediction(?) Isolate UFDs will have higher [Fe/H] than sats

Simulated MW sats
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Conclusions
• Using the highest resolution cosmological simulations (run to z=0) to date, we 

predict UFDs form in all DM halos Mhalo > 5 x 108 M⦿, including as sats of dwarfs

• Baryonic effects can create cores in halos with 1010 M⦿ < Mvir <  few x 1011 M⦿, 
and only tiny cores in UFDs (if any)

• These objects have extremely low surface brightnesses and so may only be visible 
with the next generation telescopes

• Galaxies in DM halos with Mhalo <~ 3 x 109 M⦿ have uniformly ancient stellar 
pops, suggesting quenching due to reionization

• MZR at extremely low mass deviates from observations. For lowest mass UFDs, 
likely need a massive neighbor. More work needed at higher mass - better Type 
II SNe yields? Pop III star formation?

• No prediction for minimum halo mass for galaxy formation



Thanks!


