simulating the Milky Way and its satellite galaxies (or, the Milky Way in disequilibrium)

observed Milky Way

SIMULATION PROJECT

Principal Investigators

Phil Hopkins (Caltech)

Dusan Keres (UCSD)

Claude-Andre Faucher-Giguere

(Northwestern)

Eliot Quataert (UC Berkeley)

Andrew Wetzel (UC Davis)

Chris Hayward (Flatiron CCA)

Mike Boylan-Kolchin (UT Austin)

James Bullock (UC Irvine)

Robert Feldmann (U Zurich)

Robyn Sanderson (U Penn)

Norm Murray (U Toronto)

highlighted in this talk

Xiangcheng Ma (TAC fellow @ UC Berkeley)

Shea Garrison-Kimmel (Einstein fellow @ Caltech)

Kareem El-Badry (grad student @ UC Berkeley)

Gunjan Lakhlani (grad student @ U Toronto)

UCDAVIS

GALAXY SIMULATION GROUP @ UC DAVIS

Postdocs

Sarah Loebman NASA Hubble Fellow UC Davis Chancellor Fellow

Samantha Benincasa

Graduate Students

Jenna Samuel Isaiah Santistevan Matt Bellardini

Undergraduates

Sierra Chapman

THE MILKY WAY ON

- FIRE physics model
- MW-like disks
- satellite dwarf galaxies

model for gas and star formation

Hopkins, Wetzel et al 2018

goal: model dense multi-phase ISM gas in cosmological setting

resolution

- particle mass: 3500-7000 Msun
- spatial resolution: 1 4 pc

gas cooling via atoms, molecules, and 9 metals down to 10 K

star formation in dense self-gravitating molecular clouds n_{SF} > 1000 atoms / cm³

model for stellar feedback

Hopkins, Wetzel et al 2018

goal: directly model individual stellar populations

supernovae

- core-collapse (prompt)
- type la (delayed)

stellar radiation

- radiation pressure
- photoionization heating (HII regions)
- photoelectric heating (via dust)

stellar winds

- massive O & B stars (prompt)
- AGB stars (delayed)

model for elemental abundances

Hopkins, Wetzel et al 2018

self-consistent generation + tracking of 11 abundances H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe

nucleosynthesis (generation of metals) via

- supernovae: core-collapse Nomoto et al 2006
- supernovae: type la lwamoto et al 1999
- stellar winds (dominated by O, B, & AGB stars)
 van den Hoek & Groenewegen 1997, Marigo 2001, Izzard 2004

explicitly model sub-grid turbulent mixing of each abundance in gas

cosmological zoom-in simulation to achieve ultra-high resolution

2 simulation of MW-mass galaxy

z=19.0 movie: Shea Garrison-Kimmel

z = 19.0

100 kpc

Stars

real-color SED with dust attenuation

100 kpc

Gas

magenta: cold (< 10⁴ K)

green: warm (ionized)

red: hot (> 10⁶ K)

= 2 simulation suite of MW-mass systems

Latte suite: 8 isolated MW-mass systems ELVIS suite: 2 LG-like pairs (4 halos)

THE MILKY WAY ON

- FIRE physics model
- MW-like disks
- satellite dwarf galaxies

z = 30.0

z = 30.050 kpc

Stars

real-color SED with dust attenuation

Gas

Magenta: cold $(<10^4 K)$

Green: warm (ionized)

Red: hot $(> 10^6 K)$

PROPERTIES OF GAS DISK COLD ISM + MOLECULAR CLOUDS

Samantha Benincasa (postdoc @ UC Davis)

Gunjan Lakhlani (grad student @ U Toronto)

Andrew Wetzel

UCDAVIS

properties of cold ISM

Gunjan Lakhlani et al in prep

resolving (massive) GMCs

Gunjan Lakhlani et al in prep Samantha Benincasa, Wetzel et al in prep

PROPERTIES AND FORMATION OF STELLAR DISK

Milky Way-like galaxy at z = 0

 $M_{star} = 6x10^{10} M_{sun}$

successful formation of 'thin' and 'thick' stellar disk similar to Milky Way

radial evolution: inside -> out vertical evolution: upside -> down

also Brook et al 2004, 2012, Stinson et al 2013, Bird et al 2013, Agertz & Kravtsov 2016, etc

ELEMENTAL ABUNDANCE PATTERNS IN STELLAR DISK

radial velocity [km/s]

Loebman, Wetzel et al in prep

this merger event becomes analogue to Gaia 'sausage / Enceladus / enchilada'

multiple cosmological zoom-in baryonic simulations now form realistic populations of satellites

MORE RIGOROUS TEST

WHAT ABOUT SPATIAL DISTRIBUTION OF SATELLITES?

Jenna Samuel (grad student @ UC Davis)

observed distances of satellite dwarf galaxies

FIRE simulations broadly agree with MW + M31

numerically well resolved (even at d <~ 50 kpc)

Jenna Samuel, Wetzel et al 2019

MW satellites are unusually (?) concentrated

MW satellites are unusually (?) concentrated

- no simulated host (even across time) is as concentrated as MW
- predict 2 (min) 4 (med) more 'classical' dwarf galaxies around MW

images of dark matter in

DM-only simulation baryonic simulation 100 kpc Garrison-Kimmel, Wetzel et al 2017

central galaxy destroys subhalos

predicting DM subhalo infall rates near MW

Sierra Chapman, Wetzel et al in prep

THE MILKY WAY ON

publicly available ananke.hub.yt

