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Part I 

1. Momentum-carrying waves on D1-D5 microstates 

2. CFT duals of all two-center Bena-Warner solutions 

 

Part II 

1. Fuzzball Complementarity 

2. Fuzzballs and Firewalls 

David Turton 



Black Holes 

David Turton 

Physical: dark, heavy, compact bound state of matter 

(Semi-)classical: geometry with horizon 
Quantum: bound state in  

quantum gravity theory 



Black hole hair 

• Bekenstein-Hawking entropy S     eS      microstates 

• Can physics of individual microstates modify Hawking’s calculation? 

• Many searches for Black hole ‘hair’: d.o.f. at the horizon. 

• In classical gravity, many ‘no-hair’ theorems resulted. 
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Black hole hair 

• Bekenstein-Hawking entropy S     eS      microstates 

• Can physics of individual microstates modify Hawking’s calculation? 

• Many searches for Black hole ‘hair’: d.o.f. at the horizon. 

• In classical gravity, many ‘no-hair’ theorems resulted. 

 

In String theory, we find examples of hair. Results suggests that 

• Quantum effects important at would-be-horizon (fuzz) 

• Bound states have non-trivial size (ball) 
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“Fuzzball” 



Two-charge Black hole 

• Multiwound fundamental string + momentum 

• Entropy: exponential degeneracy of microscopic states 

• For classical profiles, string sources good supergravity background 

Classical profiles $ coherent states 

• No horizons; string source 

• Transverse vibrations only  non-trivial size  

 

• F1-P is U-dual to D1-D5 bound state 

• Configurations are everywhere smooth in D1-D5 frame 

 

• Caveat: two-charge Black hole is string-scale sized. 
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D1-D5-P: three charges 

• Add momentum to D1-D5    macroscopic BPS black hole in 5D 

• Entropy reproduced from microscopic degrees of freedom 

 

• Large classes of three-charge microstate geometries constructed 

 

 

• Questions:  
 
- Do microstates have structure at the scale of the would-be horizon? 
   (So far, all results indicate ‘yes’) 
 
- How large a subset of the BH degrees of freedom can we describe? 
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D1-D5 system: setup 

David Turton 

Work in type IIB string theory on  

 

 

Q1 =
1

V
(2¼)4g®03 n1

Q1 = 1
V

(2¼)4g®03 n1a=b

• Radius of S1 : Ry 

• Wrap n1 D1 branes on S1 

• Wrap n5 D5 branes on S1 £ T             4 

 

The bound state creates a geometry with D1 and D5 charges 

 

For simplicity, set  Q1 = Q5 = Q. 
  

 



David Turton 

a=ba = b

To get a large AdS throat, take √Q ¿ Ry . Structure of geometry is then: 

 

The throat is locally AdS3 £ S          3 £ T        4. 



D1-D5 CFT  &  AdS/CFT 

• Worldvolume gauge theory on D1-D5 bound state flows in IR  

to a (4,4) SCFT. 

• Orbifold point in moduli space: Free SCFT on (T                4)N/SN  ,  N              =  n1n5. 

 

Symmetry generators:     

• VirasoroL £ VirasoroR      

• R-symmetries SU(2)L £ SU(2)R    

• U(1) currents of T                4 translations  

& Susy generators 
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2. Results 

• Proposed classification of CFT states into ‘neck’ d.o.f. and ‘cap’ d.o.f. 

• Constructed explicit gravitational solutions describing neck d.o.f.  

 

 

 

 

• Identified CFT duals of known two-center Bena-Warner solutions  

describing ‘cap’ d.o.f.  
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Neck degrees of freedom 

• Asymptotic symmetry group (ASG):  

symmetries preserving asymptotics of the space 

• ASG of AdS3 :  VirasoroL £ VirasoroR . 

• D1-D5 AdS/CFT generalization: 

 

 

 

• Proposal: Neck d.o.f. correspond to action of chiral algebra generators 
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Neck degrees of freedom 

• Take the D1-D5 ground state          and seek dual of                     (z = z1)      

• In the AdS3 £ S          3 £ T        4  throat,          is diffeomorphism along T  4 

• However         has higher energy than     

  perturbation can’t be a diffeomorphism everywhere 

 

• We find a solution  which is non-trivial in the neck region  

between throat and flat asymptotics.        
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Method 

David Turton 

1. Solve e.o.m. in ‘outer’ and ‘inner’ regions separately,  

& match solutions in the ‘throat’ 

 

 

 

 

2. Extend to closed-form perturbation on full background 

 

3. Generalize to full nonlinear solution & to other backgrounds 
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Full non-linear solution for                 : 

where 



Generalization 

David Turton 

• Local form of all supersymmetric solutions of minimal supergravity in 6D: 

‘GMR’ form 

• Above solution generalizes to non-linear deformation of any solution  

in GMR form. 

• Solution is given in terms of a function which obeys  

wave equation on the background metric. 

 

• GMR class includes all 2 charge D1-D5 solutions  

& some 3 charge D1-D5-P solutions 
 

 

• Solve wave equation on D1-D5-P solutions from spectral flow: 
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• Metric: 

 

 



3. Microstates at the Cap 

David Turton 

 

• Look for states which cannot be written in terms of symmetry algebra 

generators acting on a ground state. 

 

 

• These should correspond to bulk solutions with non-trivial cap structure. 



States with fractional filling 

David Turton 

• Consider Fermi seas filled to fractional level  s/k : 

 

 

 

 

 

 

 

• For 

these states cannot be obtained by acting  

with symmetry algebra generators on R ground states. 

 

 

 

 

 

 

 

 

 

 

~ Spectral flow 

   on cover 



Gravitational descriptions 

David Turton 

• Gravitational descriptions of the states: previously known 

 

• Generalizations of the gravitational solutions describing states with integer 

spectral flow parameter  nL  to fractional values  s/k . 

 

• Interesting orbifold structure in cap 

 

 

• Corresponds to most general Bena-Warner solution with 2 centers 

 

 

• Four integers  n1, n5, k, s   specify the geometry 
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• Metric: 

 

 



Part I Summary 

 

 

• Examples of both cap states and neck states identified 

 

• Supports proposal that neck d.o.f. correspond to symmetry algebra 

generators 

 

• Cap states are step towards understanding generic state of black hole 
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Part II: Black Hole Complementarity 
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The Information Paradox 

David Turton 

BH Horizon:  

normal lab physics 

(small curvature) Hawking radiation: 

pair creation 

   entangled pair 

• Endpoint of process: violation of unitarity or exotic remnants 

• Conclusions robust including small corrections (Mathur’s theorem) 
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The Fuzzball Proposal 

David Turton 

• Conjecture: the generic state of a black hole is described by a solution of 

string theory which  

– resembles the traditional black hole far outside the would-be horizon 

– ends in a complicated structure involving sources of string theory  

just outside the would-be horizon.  

 

• There is no horizon and no interior. 

 

 

 

 

 

 

 

 

 

 

 

 



The Fuzzball Proposal 

David Turton 

• Conjecture: the generic state of a black hole is described by a solution of 

string theory which  

– resembles the traditional black hole far outside the would-be horizon 

– ends in a complicated structure involving sources of string theory  

just outside the would-be horizon.  

 

• There is no horizon and no interior. 

 

 

• A collapsing shell of matter should tunnel into a fuzzball configuration  

– tunneling time has been estimated to be << the Hawking evaporation time 

(may be expected to be of order the ‘scrambling time’). 

 

• Open question: what happens if you fall onto a fuzzball configuration? 

– Conjecture: for coarse, high energy (E >> T) processes,  

there should be a ‘complementary’ description involving free infall Mathur  1012.2101 

Mathur, Plumberg  1101.4899 
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• In the Fuzzball scenario, what is the role of the classical BH metric? 

 

 

• What quantities does the classical BH metric accurately describe? 

 



Correlators in Rindler space 

David Turton 

Rindler space:  

• Accelerated observer in Minkowski space 

• Near-horizon region of a black hole 

 

• Minkowski space decomposes  

into four Rindler wedges 

 

 

• Consider a free scalar field theory 

• Minkowski vacuum restricted to right Rindler wedge is a thermal state 

 

 

 



Correlators in Rindler space 

David Turton 

• Consider the right Rindler wedge, in a particular generic state. 

 

Divide correlators into those which  

1. Are well approximated by the canonical ensemble (coarse/non-fine-tuned) 

2. Are not well approximated by the canonical ensemble (fine-tuned). 

(sensitive to some details of generic microstates) 

 

• Minkowski vacuum $  canonical ensemble,  

so accurately describes coarse/non-fine-tuned correlators: 

 

 

 

• Suggests correct role of traditional black hole metric. 

 



Fuzzball Complementarity: a conjecture 

David Turton 

• Picture 1: space-time is cut off by the fuzzball surface: 

state is a solution of string theory.  

– This description is appropriate for all physical processes (and all observers).  

 

 

 

 

 

 



Fuzzball Complementarity: a conjecture 

David Turton 

• Picture 1: space-time is cut off by the fuzzball surface: 

state is a solution of string theory.  

– This description is appropriate for all physical processes (and all observers).  

 

 

 

 

 

 

 

• Picture 2:  Traditional black hole metric. 

– This description accurately describes  

many processes, including a set of  

coarse, high energy (E >> T) impact processes  
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What Fuzzball Complementarity is not 

David Turton 

• It is not an attempt to reconstruct the interior space-time. 

 

• It does not postulate new observer-dependent physics in black holes. 

 

 

 

Rather, the conjecture is that in the fuzzball scenario,  

the traditional black metric still accurately describes many processes,  

including a set of coarse, high-energy (E >> T) impact processes. 

 

 

 

 

 

 

 



Toy Model: AdS/CFT 

David Turton 

Analogy between Fuzzball Complementarity and AdS/CFT: 

• Consider D1-D5 system in regime where AdS description is weakly coupled 

 

 

• In the CFT description, an incoming  

graviton hits the D1-D5 bound state  

and breaks up into excitations of the  

(strongly coupled) CFT. 

 

 

• In the dual gravity description, the graviton  

experiences a smooth space-time  

with low curvature through the vicinity  

of the CFT location. 
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Black Hole Complementarity 

David Turton 

• Picture 1: space-time is cut off by a ‘stretched horizon’:  

a Planck-temperature membrane.  

– This description is appropriate for an observer at infinity. 

 

– Postulate 1:  Formation and evaporation  

  of BH is unitary  

– Postulate 2:  Semiclassical physics  

  outside ‘stretched horizon’ 

– Postulate 3:  Black hole has eS  states 

  & discrete energy levels 

 

• Picture 2:  Traditional black hole metric. 

– This description is appropriate for an infalling observer. 

 

– Postulate 4:  An observer falling into the black hole and crossing the horizon  

  experiences semiclassical physics in the traditional black hole geometry 

Susskind, Thorlacius, Uglum ’93 



Black Hole Complementarity 

David Turton 

• Picture 2:  Traditional black hole metric. 
– This description is appropriate for an infalling observer. 

– Postulate 4:  An observer falling into the black hole and crossing the horizon  

  experiences semiclassical physics in the traditional black hole geometry 

 

• This requires sharpening. For example: 
 

– Postulate 4A: Semiclassical physics in the traditional black hole geometry 

   describes all possible low-energy measurements made by an infalling 

   observer, including fine-tuned experiments. 

 



Black Hole Complementarity 

David Turton 

• Picture 2:  Traditional black hole metric. 
– This description is appropriate for an infalling observer. 

– Postulate 4:  An observer falling into the black hole and crossing the horizon  

  experiences semiclassical physics in the traditional black hole geometry 

 

• This requires sharpening. For example: 
 

– Postulate 4A: Semiclassical physics in the traditional black hole geometry 

   describes all possible low-energy measurements made by an infalling 

   observer, including fine-tuned experiments. 

 

 

• With hindsight, this seems unphysical from the point of view of the fuzzball 

program; the traditional black hole metric is thought of as an ensemble average 

description, so should not describe fine-tuned measurements.  
 

• By applying Mathur’s theorem, it has recently been shown to be inconsistent. 
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Firewall Argument 1 

David Turton 

• Postulate 4A claims that Picture 2 describes fine-tuned experiments. 

• After the Page time, a fine-tuned experiment shows that b is (almost)  

maximally entangled with  the early radiation E. 

 

• However, in Picture 2, b is entangled with  

its partner c, which is not compatible  

(by applying strong subadditivity,  

as in Mathur’s theorem). 

 

 

Conclusions: 

• Require structure at the horizon (for all observers) 

• BH metric does not describe fine-tuned experiments.  
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Conclusions: 

• Require structure at the horizon 

• BH metric does not describe fine-tuned experiments.  
 

 

 

 

• Extrapolation: consider excited states (hair) at the horizon in Picture 2.  
(Alternatively, new physics at macroscopic distances outside horizon, e.g. Giddings et al.) 

  

 

• One requires excitations all the way to the Planck scale  –  “Firewall”. 
(Reconstruct Planck-temperature membrane/shock-wave in Picture 2.) 

 

   =>  Fuzzball  /  Firewall  

 



Firewall Argument 2 

David Turton 

 

• Original claim: Firewall argument excludes fuzzball complementarity 

 

 

• This claim was later retracted 

 

 

Argument is nevertheless interesting to consider: 

 

• Firewall argument 2:  If infalling quantum interacts significantly  

with Hawking quanta  b  outside the fuzzball surface,  

then after the Page time this interaction cannot be  

‘undone’ by the fuzzball surface, since there is no local entanglement. 
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Some Important Subtleties 

David Turton 

 

• Can an infalling quantum interact significantly with Hawking radiation 

before reaching the fuzzball surface? 

 

• How should one define the fuzzball surface / stretched horizon? 

What are its properties? 
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Some Important Subtleties 

David Turton 

 

• Can an infalling quantum interact significantly with Hawking radiation 

before reaching the fuzzball surface? 

 

• How should one define the fuzzball surface / stretched horizon? 

What are its properties? 

 

• Extrapolate model of stretched horizon (SH) from fuzzball results: 

 

• Conservative assumption: generic fuzzball state has its d.o.f  located at a 

Planck distance lp  from the would-be horizon 
(If incorrect, firewall argument 2 is even weaker) 

 

• Stretched horizon:  exp( S(M) ) states of mass M at radius  r0(M) + lp 
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Some Important Subtleties 
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• Appears inconsistent to allow infalling quantum to reach SH without SH 

first expanding 

 

• Mechanism: tunneling into exp( S(M+E) ) states, new radius r0(M+E) 

 

• Expect that SH should first expand into a local ‘bubble’ of size 

 

 

 

• Can an infalling quantum interact significantly with Hawking radiation 

before reaching this location? 

 

 

 

 

 

 



Interaction cross section with Hawking quanta 
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• Consider free-fall from outside 2 r0  (Ignore fine-tuning from  

     lowering to near the horizon) 

 

• Take for concreteness graviton-graviton cross-section, which grows with 
energy (Other particles can be treated similarly). 

 

• Naïve estimate: c.o.m. energy is transplanckian when interaction   
happens with order 1 probability. 

 

• On general considerations, 3 regimes of impact parameter  d . 
Let  Rs  be the Schwarzschild radius of a black hole with mass  
equal to the center-of-mass energy of the collision, Ec . 
 
i) smallest:  BH formation                              d  .    Rs 
ii) intermediate: depends on theory     Rs  .  d  .   ® Rs 
iii) largest: classical deflection                       d  À  ® Rs 
             (for some constant ®).    
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Interaction cross section with Hawking quanta 

David Turton 

Combine i) and ii) – Probability of ‘significant’ interaction becomes order 1 at 

 

 

So we find  

 

 

In case iii), we show that the deflection is parametrically smaller than the 

Planck length. 

 

 

For the case of a fixed cross-section which does not grow with energy, for 

sufficiently large  E/T  the same conclusions apply. 
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So it appears that for sufficiently large  E/T , there is no significant  

interaction with Hawking quanta before the location that the fuzzball  

surface tunnels out to. 

 

 

Open questions: 

 

• How large should E/T be in any given physical situation? 

 

• Firewall  =>  Fuzzball ? 

 

 

 

 

 

 



Summary: Part II 
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• Mathur’s theorem: horizon cannot be ‘information free’ 

 

• Suggests that a black hole in a generic state is a fuzzball 

 

• Fuzzball complementarity is weaker than Black Hole Complementarity,  

and will be interesting to explore further. 



Thanks! 
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Bonus slides 
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Mathur’s theorem 
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• A precise statement of the information paradox 

 

• Assumptions: good semiclassical limit over ‘nice slices’ inside and outside 
the horizon 

 

 

 

 

 

 

 

 

• Includes small corrections to leading order process 
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Leading order pair creation process 
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• Model evolution of state: 

– H:  Interior 

– b, c:  next Hawking pair 

– E:  early radiation 

 

 

 

 

 

• Entanglement entropy of BH with surroundings increases by  ln 2: 



Including small corrections 
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• Allow small corrections from entire matter inside the black hole 

– Small probability of emitting orthogonal state to Hawking state 

 

 

• Assume that Hawking quanta which have already left do not affect process 

– (similar to how a piece of paper burns). 

 

 

 

 

• Use strong subadditivity inequality: 

 

  


