Small Galaxies, Big Science

Alex Drlica-Wagner (Fermilab)

KITP Chalk Talk

May 16, 2018

Orbits of the Inner Planets

Simulation

Image Credit: Indo Berg

Data

NOAO, AURA, NSF, T.A. Rector

Abell 2218; Johan Richard (HST; NASA/ESA)

Simulation

Normal Matter ($\Omega_b = 0.05$)

Dark Matter ($\Omega_c = 0.275$)

Dark Energy ($\Omega_{\Lambda} = 0.675$)

Composition of the Universe

Smaller

Observable Universe

Clusters of Clusters

Clusters of Galaxies

Individual Galaxies

Plank Collaboration (2016)

KITP program

Questions?

Simulating the Universe

Simulation: Wu, Hahn, Wechsler

Visualization: Kaehler

Dark matter shown as bright pixels!

The Milky Way

z = 0.0

Simulation of the Dark Matter Halo

The Milky Way

Jargon: A dark matter "halo" is a gravitationally bound clump of dark matter

The standard model of cosmology predicts that there should be many* small galaxies around our Milky Way

* The quantitative value of "many" has been hotly debated over the last several decades (including the last several weeks...)

Simulation of the Dark Matter Halo

Sculptor Dwarf Galaxy

Harlow Shapley

March 1, 1938

A Stellar System of a New Type. — A large rich cluster with remarkable characteristics appears on photographs received from the Boyden Station. Since nothing quite like it is now known, a detailed though preliminary description is given in the following pages.

Sculptor Dwarf Galaxy

1.2m Telescope Photographic Plates

Dwarf Galaxy Discovery Timeline

Credit: NASA, ESA, Anderson & van der Marel (STScI)

https://www.spacetelescope.org/videos/heic1017b/

Matched Filter Searches

Stellar Isochrone

1) Start with a large catalog of stars

2) Apply a selection in color-magnitude space based on a stellar isochrone

Koposov et al. (2008) Walsh et al. (2009) Willman et al. (2010)

Segue 1 Galaxy Marla Geha M_★ ~ 340 M_☉

Segue 1 Galaxy Marla Geha M**★ ~ 340 M**⊙ But how do we know?

Measuring Velocities

Measuring Velocities

"Galaxy" Defined

"Galaxy" Defined

"A galaxy is a gravitationally bound collection of stars whose properties cannot be explained by a combination of baryons and Newton's laws of gravity"

Willman & Strader (2012)

Dwarf Galaxy Discovery Timeline

Dwarf Galaxy Discovery Map

(Belokurov 2013)

Sky Covered by SDSS

- Discovered before SDSS (classical dwarfs)
- Discovered with SDSS (ultra-faint dwarfs)

- Sky Covered by SDSS
- Uncovered Sky

- Discovered before SDSS (classical dwarfs)
- Discovered with SDSS (ultra-faint dwarfs)

(Belokurov 2013)

Sky Covered by SDSS

- Discovered before SDSS (classical dwarfs)
- Discovered with SDSS (ultra-faint dwarfs)

(Belokurov 2013)

Reticulum II Dwarf Galaxy

Blue - Previously discovered satellites

Green - Discovered since 2015 with PanSTARRS, SDSS, etc.

Red outline - DES footprint
Red circles - DES Y1 satellites
Red triangles - DES Y2 satellites

Questions?