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In 1980’s → there are phases beyond symmetry-breaking
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states

that all have the
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• Different QH states can-
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What is topological order? (What is spin liquid?)

To define a physical concept, such as symmetry-breaking order or
topological order, is to design a probe to measure it

For example,
• crystal order is defined/probed by X-ray diffraction:
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Symmetry-breaking orders through experiments

Order Experiment

Crystal order X-ray diffraction

Ferromagnetic order Magnetization

Anti-ferromagnetic order Neutron scattering

Superconducting order Zero-resistance & Meissner effect

Topological order ???

• All the above probes are linear responses. But topological order
cannot be probed/defined through linear responses.
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Topological orders through experiments (1990)

Topological order can be defined “experimentally” through two
unusual topological probes (at least in 2D)

(1) Topology-dependent ground state degeneracy Dg Wen 89

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2

(2) Non-Abelian geometric’s phases of the degenerate ground
state from deforming the torus: Wen 90

- Shear deformation T : |Ψα〉 → |Ψ′α〉 = Tαβ|Ψβ〉

- 90◦ rotation S : |Ψα〉 → |Ψ′′α〉 = Sαβ|Ψβ〉

• T ,S , define topological order “experimentally”.

• T ,S is a universal probe for any 2D topological orders, just like
X-ray is a universal probe for any crystal orders.
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Symmetry-breaking/topological orders through experiments

Order Experiment

Crystal order X-ray diffraction

Ferromagnetic order Magnetization

Anti-ferromagnetic order Neutron scattering

Superconducting order Zero-resistance & Meissner effect

Topological order Topological degeneracy,
(Global dancing pattern) non-Abelian geometric phase

• The linear-response probe Zero-resistance and Meissner effect
define superconducting order. Treating the EM fields as non-dynamical fields

• The topological probe Topological degeneracy and non-Abelian
geometric phases T ,S define a completely new class of order –
topologically order.

• T ,S determines the quasiparticle statistics. Keski-Vakkuri & Wen 93;

Zhang-Grover-Turner-Oshikawa-Vishwanath 12; Cincio-Vidal 12
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What is the microscopic picture of topological order?

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2

represent an experimental definition of topological order.

• But what is the microscopic understanding of topological order?

• Zero-resistance and Meissner effect → experimental definition of
superconducting order.

• It took 40 years to gain a microscopic
picture of superconducting order:
electron-pair condensation
Bardeen-Cooper-Schrieffer 57

• It took 20 years to gain a microscopic
understanding of topological order:
long-range entanglements Chen-Gu-Wen 10

(defined by local unitary trans. and
motivated by topological entanglement
entropy). Kitaev-Preskill 06,Levin-Wen 06
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Pattern of long-range entanglements = topological order

For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase

• Thinking about entanglement: Chen-Gu-Wen 2010

- There are long range entangled (LRE) states

→ many phases

- There are short range entangled (SRE) states

→ one phase

|LRE〉 6= |product state〉 = |SRE〉

local unitary
transformation

LRE
product

SRE
state

state

local unitary
transformation

LRE 1 LRE 2

local unitary
transformation

product
state

product
state

SRE SRE

g
1

2
g

SRE

LRE 1 LRE 2

phase

transition

topological order

• All SRE states belong to the same trivial phase

• LRE states can belong to many different phases
= different patterns of long-range entanglements defined by the LU trans.

= different topological orders
→ A classification by tensor category theory Levin-Wen 05, Chen-Gu-Wen 2010
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How to SEE topological order?

• Topological order is a property or a pattern in the ground state
wave function

Φ(x1, x2, ..., xN), N ∼ 1010 − 1023

But how to see a pattern in a wave function that we cannot even
write down?

• Symmetry breaking order is also a pattern in the ground state
wave function, where we examine if the wave function is invariant
under symmetry operation U or not:

U[Φ(x1, x2, ..., xN)] =?= Φ(x1, x2, ..., xN)

→ pattern of symmetry breaking.

• Use dancing picture to understand the pattern of topological order
and pattern of symmetry breaking order.
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See symmetry breaking orders through pictures

Ferromagnet Anti-ferromagnet

Superfluid of bosons Superconductor of fermions

• every spin/particle is doing its own dancing,
every spin/particle is doing the same dancing→ Long-range order
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Topological orders through pictures

FQH state String liquid (spin liquid)

• Global dance:
All spins/particles dance following a local dancing “rules”

→ The spins/particles dance collectively
→ a global dancing pattern.
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Local dancing rule → global dancing pattern

• Local dancing rules of a FQH liquid:
(1) every electron dances around clock-wise

(ΦFQH only depends on z = x + iy)
(2) takes exactly three steps to go around any others

(ΦFQH’s phase change 6π)
→ Global dancing pattern ΦFQH({z1, ..., zN}) =

∏
(zi − zj)

3

• Local dancing rules are enforce by the Hamiltonian
to lower the ground state energy.
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Local dancing rule → global dancing pattern

• Local dancing rules of a string liquid:
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= Φstr

( )
→ Global dancing pattern Φstr

( )
= 1

• Local dancing rules of another string liquid:
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= −Φstr

( )
→ Global dancing pattern Φstr

( )
= (−)# of loops

• Two string-net condensations → two topological orders Levin-Wen 05
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What is the significance of topological order?

Global dancing pattern is a nice picture for topological order.
But does it mean anything?
Does topological order have any experimental significance?
Does topological order have any new experimental properties,
that is different from any symmetry breaking order?

How to measure/study topological order in experiments?

• Topological orders produce new kind of waves
(collective excitations above the topo. ordered ground states).
→ change our view of universe

• The defects of topological order carry
fractional statistics (including non-Abelian statistics) and
fractional charges (if there is symmetry).
→ a medium for topological quantum memory and computations.

• Some topological orders have topologically protected gapless
boundary excitations
→ perfect conducting surfaces despite the insulating bulk.

Xiao-Gang Wen, Perimeter/MIT, Oct. 2012 From topological order to long-range entanglement



What is the significance of topological order?

Global dancing pattern is a nice picture for topological order.
But does it mean anything?
Does topological order have any experimental significance?
Does topological order have any new experimental properties,
that is different from any symmetry breaking order?

How to measure/study topological order in experiments?

• Topological orders produce new kind of waves
(collective excitations above the topo. ordered ground states).
→ change our view of universe

• The defects of topological order carry
fractional statistics (including non-Abelian statistics) and
fractional charges (if there is symmetry).
→ a medium for topological quantum memory and computations.

• Some topological orders have topologically protected gapless
boundary excitations
→ perfect conducting surfaces despite the insulating bulk.

Xiao-Gang Wen, Perimeter/MIT, Oct. 2012 From topological order to long-range entanglement



Topological order (closed oriented strings)
→ emergence of electromagnetic waves (photons)

• Wave in superfluid state |ΦSF〉 =
∑

all position conf.

∣∣∣ 〉
:

density fluctuations:
Euler eq.: ∂2

t ρ− ∂2
xρ = 0

→ Longitudinal wave

• Wave in closed-string liquid |Φstring〉 =
∑

closed strings

∣∣∣ 〉
:

String density E(x) fluctuations → waves in string condensed state.
Strings have no ends → ∂ · E = 0 → only two transverse modes.
→ Maxwell eq.: Ė− ∂ × B = Ḃ + ∂ × E = ∂ · B = ∂ · E = 0.
Foerster-Nielsen-Ninomiya 80; Wen 02; Senthil-Motrunich 02; Hermele-Fisher-Balents 04;...
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Topological order →
Emergence of electrons (fermions, and even anyons)

• In string condensed states, the ends of string be have like point
particles
- with quantized (gauge) charges
- with Fermi statistics
Levin-Wen 2003

• String-net/topological-order provides a way to
unify gauge interactions and Fermi statistics in 3D
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Emergence of fractional spin/statistics
(from the local dancing rules)

• Why end of string carry spin-1/2 and Fermi statistics?
Levin-Wen 05;Fidkowski-Freedman-Nayak-Walker-Wang 06

• Φstr

( )
= 1 string liquid Φstr

( )
= Φstr

( )
360◦ rotation: → and = →

+ has a spin 0 mod 1. − has a spin 1/2 mod 1.

• Φstr

( )
= (−)# of loops string liquid Φstr

( )
= −Φstr

( )
360◦ rotation: → and = − → −

+ i has a spin −1/4 mod 1. − i has a spin 1/4 mod 1.
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More general dancing rules → Tensor category theory

The local dancing rules can be described by data di ,Nijk ,F
ijm
kln :
Levin-Wen 05

Φ

(
i

)
= diΦ

( )
Φ

(
ji

l

k
)

= δijNilkΦ

(
i

l

k

i

)
Φ

(
kj

i lm

)
=

N∑
n=0

F ijm
kln Φ

(
i
j n k

l

)
which must satisfy F ijk

j∗i∗0 =
vk
vivj

Nijk , v2
i = di

F ijm
kln = F lkm∗

jin = F jim
lkn∗ = F imj

k∗nl

vmvn
vjvl

N∑
n=0

Fmlq
kpn F

jip
mnsF

jsn
lkr = F jip

qkrF
riq
mls

The theory about the solutions = tensor category theory
→ classify 2D gapped phases with no symmetry (topological order)
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Gapped phases w/ symmetry → SET and SPT phases

• there are LRE symmetric states → Symm. Enriched Topo. phases
- 100s symm. spin liquid through the PSG of topo. excit. Wen 02

- 8 trans. symm. enriched Z2 topo. order in 2D, 256 in 3D Kou-Wen 09

- 1000, 000s symm. Z2 spin liquid through [H2(SG ,Z2)]2× Hermele 12

- Classify SET phases through H3[SG × GG ,U(1)] Ran 12

• there are SRE symmetric states → one phase

many different phases

We may call them symmetry protected trivial (SPT) phase

or symmetry protected topological (SPT) phase

2
g

1
g

2
g

SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

g
1

SRE

SB−SRE 2

SY−SRE 2

symmetry breaking

(group theory)

SPT phases

(tensor category

(group cohomology

  theory)

LRE 1 LRE 2

SET orders

  w/ symmetry)
intrinsic topo. order

topological  order
(tensor category)

symmetry
preserve

no symmetry

phase

transition

SPT 1 SPT 2

- Haldane phase of 1D spin-1 chain w/ SO(3) symm. Haldane 83

- 1 topo. ins. w/ U(1)× T symm. in 2D, Kane-Mele 05; Bernevig-Zhang 06

15 in 3D Moore-Balents 07; Fu-Kane-Mele 07
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Highly entangled quantum matter:
A new chapter of condensed matter physics

Haldane

Phase

Topological

Insulator

Liquid

Crystal

FQH

State

Short−Range Entangled

Symm. Breaking

Gauge theory

Fermi statistics Boundary excitations

Liquid

Spin Crystal

Magnet

InsulatorShape

Information storage

Boundary excitations

Gapless Goldstone mode

With symmetry

Long−Rang Entangled

= Topological order

Tensor category

cohomology
Group

Anti−localization
Topological degeneracy

Group Theory

theory

theory

Quantum States of Matter (gapped)

Fractional statistics

Real Super−

conductor

• Group theory → Symmetry breaking order →
shape, superfluid, phonon, magnets, magnon, liquid crystals, ... ...
• Tensor category theory → Topological order →

FQH effect, anyons, fermions, fractional charge/spin, spin liquid,
photon, perfect conducting edges, ... ...
• Group cohomology theory → SPT order →

symmetry protected boundary excitations, ... ...
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