Correlation effects in organic charge-transfer salts: A combined *ab-initio* and many-body investigation

Roser Valentí Institut für Theoretische Physik

(BEDT-TTF)₂X

Exotic Phases in Frustrated Magnets, KITP October 8th 2012

Theory: Kateryna Foyevtsova, Johannes Ferber,Anthony Jacko and Harald JeschkeUniv. Frankfurt

Experiment: Rudra Manna, Mariano de Souza,
Michael LangUniv. FrankfurtJohn SchlueterArgonne Nat. Lab. IL, USA

Financial support: German Science Foundation DFG SFB/TR 49, SPP1458

κ-(BEDT-TTF)₂X

Shimizu et al.PRL **91,** 107001 (2003) S. Yamashita et al. Nat. Phys.**4,** 459 (2008) M. Yamashita et al. Nat. Phys.**5,** 44 (2008) Manna et al. PRL **104,** 016403 (2010) Pratt et al. Nature **472,** 612 (2011)

Ρ

metal

Spin liquid candidate I

Microscopic description of organic CT salts

κ -(BEDT-TTF)₂Cu₂(CN)₃

1 hole/dimer

S=1/2 triangular lattices

$H = \sum_{i,j\sigma} t_{ij} \left[c_i^{+} c_j^{+} c_j^{+} c_i \right] + U \sum n_{i\uparrow} n_{i\downarrow}$

Microscopic description of organic CT salts

 combine material specific input from DFT + nonperturbative many-body treatment of correlations DFT+DMFT

spectral properties, optical conductivity

Ab initio DFT for κ -(BEDT-TTF)₂Cu₂(CN)₃

Kandpal, Opahle, Zhang, Jeschke, Valenti PRL 103, 067007 (2009)

relaxation atomic positions CP-PAW

Comparison bandstructures for κ -(BEDT-TTF)₂Cu₂(CN)₃

Kandpal, Opahle, Zhang, Jeschke, Valenti PRL 103, 067007 (2009)

 $H = \sum_{i,j\sigma} t_{ij} \left[c_i^{+} c_j^{+} c_j^{+} c_i \right] + U \sum n_{i\uparrow} n_{i\downarrow}$

Tight-binding- downfolding approach on the DFT bandstructure:

Hückel: t'/t = 1.06 DFT: t'/t = 0.83 +/- 0.08

Kandpal et al. PRL (2009)

Nakamura et al. JPSJ (2009)

Revision of model parameters!

hydrostatic pressure on κ -(BEDT-TTF)₂Cu₂(CN)₃

- high-pressure structure obtained with CP-PAW
- electronic structure FPLAPW (Wien2k) Exchange: GGA

pressure decreases t'/t ratio \rightarrow less frustration!!

Temperature dependence of structural parameters in κ -(BEDT-TTF)₂Cu₂(CN)₃

Temperature dependence of electronic properties in κ -(BEDT-TTF)₂Cu₂(CN)₃

Jeschke, Souza, Valenti, Manna, Lang, Schlueter PRB 85, 035125 (2012)

Temperature dependence of electronic properties in κ -(BEDT-TTF)₂Cu₂(CN)₃

Ab initio DFT for $Me_3EtSb[Pd(dmit)_2]_2$

Spin liquid candidate II

Itou, Oyamada, Maegawa, Tamura, Kato PRB 77, 104413 (2008)

1 electron/dimer

Ab initio DFT for $Me_3EtSb[Pd(dmit)_2]_2$

Spin liquid candidate II

 electronic structure basis: FPLO Exchange Functional GGA Scriven, Powell PRL 109, 097206 (2012) Nakamura, Yoshimoto, Imada arXiv:1208.3954 Jacko, Jeschke, Valenti in preparation (2012)

Ab initio DFT for $Me_3EtSb[Pd(dmit)_2]_2$

Spin liquid candidate II

Bandstructure downfolding

Scriven, Powell PRL 109, 097206 (2012) Nakamura, Yoshimoto, Imada arXiv:1208.3954 Jacko, Jeschke, Valenti in preparation (2012)

(meV)	μ	t_1	t_2	t_3
LUMO-b	-454	0.7	-14.6	8.5
HOMO-ab	32.3	56.5	39.8	46.9
LUMO-ab	515	-24.4	13.4	23

Anisotropic triangular lattice

LDA + DMFT for organic molecular crystals

We combine the material specific input from **DFT** with a non-perturbative many-body treatment of correlations as implemented in the **dynamical mean field theory**

correlations in κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x}

Faltermeier *et al.* PRB **76**, 165113 (2007) Dumm *et al.* PRB **79**, 195106 (2009)

LDA+DMFT:

-electronic structure calculations within LDA, LAPW basis (Wien2K) -construction of localized Wannier-like functions

 \rightarrow new scheme to construct molecular Wannier functions!

- DMFT self-consistency / impurity solver: CT QMC Hubbard parameters **U= 0.5-0.85 eV T=300K**

HOMO Wannier function For the (ET)₂ dimer

LDA+DMFT for κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} X=0

LDA vs. LDA+DMFT bandstructure

Optical conductivity for κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} X=0

Optical conductivity for κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} X=0

Optical conductivity for κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} X=0

DFT + many-body calculations

 \rightarrow realistic description of correlated systems : organic triangular lattices

Microscopic model for κ -(BEDT-TTF)₂Cu₂(CN)₃

- t'/t = 0.83 (degree of frustration)
- t'/t decreases under P
- nonmonotonous t'/t under $T \rightarrow$ minimum at 150K
- Microscopic model for Me₃EtSb[Pd(dmit)₂]₂
 - anisotropic triangular lattice

LDA+DMFT for-(BEDT-TTF)₂Cu[N(CN)₂]CI

- new scheme for constructing Wannier molecular functions
- Hump **in optical conductivity** \rightarrow correlation effects!
- extension to other molecular crystals

Hubbard model

Microscopic description under pressure

Car-Parrinello Method

DFT + Molecular Dynamics

Car, Parrinello PRL (1985)

$$L = \frac{1}{2} \sum_{i} M\dot{R}_{i}^{2} + \sum_{n} f_{n} \left\langle \dot{\Psi}_{n} | M_{\Psi} | \dot{\Psi} \right\rangle - E(R, \Psi) + \sum_{n,m} (\langle \Psi_{n} | \Psi_{n} \rangle - \delta_{n,m}) \lambda_{n,m}$$

Parrinello-Rahman Lagrangian:

Parrinello , Rahman JAP (1981)

basis: Projected Augmented Wave

functional: LDA, GGA, LDA+U, Hybrid

P. Blöchl

CP-PAW

Description of phase transitions