"Quantum Spin Ice" Physics Determined from High Field Spin Waves in Yb₂Ti₂O₇

WATERLOO

Kate A. Ross^{1,2,3}

¹Johns Hopkins University ²NIST Center for Neutron Research ³McMaster University

NSERC

CRSNG

Collaborators

McMaster University

Carl Adams Hanna Dabkowska Bruce Gaulin Jacob Ruff

NIST Center for Neutron Research

John Copley Jason Gardner Deepak Singh Yiming Qiu **UC Santa Barbara**

Leon Balents Lucile Savary Jan Kycia Luke Yaraskavitch Jeff Quilliam

University of Waterloo

Paul Scherrer Institut

Mark Laver

Los Alamos

Thomas Proffen

Outline

Rare Earth Titanate Pyrochlores

Yb₂Ti₂O₇ bulk properties and an "unusual" transition

Nature of Spin Correlations

Sensitivity of transition to subtle disorder

Anisotropic Exchange Hamiltonian Determined

Yb₂Ti₂O₇ as a Quantum Spin Liquid?

Real Pyrochlores

R2T12O7 "Rare earth titanates"

<u>Single-ion Anisotropy</u>: Crystal Field Effects

<u>Exchange Anisotropy</u>: Spin orbit coupling

Crystal Field Splitting and Effective Spins

$Yb_2Ti_2O_7$

Malkin et al, PHYSICAL REVIEW B **70**, 075112 (2004)

Ho₂Ti₂O₇ Malkin et al, PHYSICAL REVIEW B **70**, 075112 (2004)

240K

 $g_{||} = 1.78$ $g_{\perp} = 4.28$

At low temperatures, ignore higher levels: Ground state doublet \rightarrow effective S = 1/2

Crystal Field Splitting and Effective Spins

$Yb_2Ti_2O_7$

Malkin et al, PHYSICAL REVIEW B **70**, 075112 (2004) Ho₂Ti₂O₇ Malkin et al, PHYSICAL REVIEW B **70**, 075112 (2004)

 $g_{\parallel} = 1.78$ $g_{\perp} = 4.28$

At low temperatures, ignore higher levels: Ground state doublet \rightarrow effective S = 1/2

Ferromagnetic Local Ising Pyrochlore

Local ferromagnetic Ising model maps onto *global* antiferromagnetic Ising model.

Frustrated!

$$H = \frac{D}{2} \sum_{K,\kappa} (\mathbf{\hat{d}}_{\kappa} \cdot \mathbf{S}_{K,\kappa})^2 + J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$
$$\mathbf{\hat{f}}$$
$$H = DN - \frac{J}{3} \sum_{\langle i,j \rangle} T_i T_j$$

R. Moessner, Physical Review B 57, 5587 (1998).

Ferromagnetic Easy Axis Anisotropy in Hamiltonian

D is the strength of anisotropy

 T_i is an Ising variable: +1 or -1 for spin pointing in or out

Two Ferromagnetic Cases

Ferromagnetic Easy Axis Anisotropy in Hamiltonian

Ferromagnetic Easy-Plane (XY) anisotropy

 $\Rightarrow \theta_{cw} \approx [400 \text{mK}, 800 \text{mK}]$ $\Rightarrow g_{xy} = 4.3, g_z = 1.8$

Tuesday, November 6, 2012

Drop in Spin Fluctuation Rate

Tuesday, November 6, 2012

Tuesday, November 6, 2012

Drop in Spin Fluctuation Rate

Magnetic scattering at Bragg Peaks

Time of Flight Neutron Scattering

"Disk Chopper Spectrometer" (DCS)

② NIST Center for Neutron Research

> Single Crystal Yb2Ti2O7

Time of Flight Neutron Scattering

"Disk Chopper Spectrometer" (DCS)

Ø NIST Center for Neutron Research

> Single Crystal Yb2Ti2O7

"Time of Flight" data

Can slice through this volume in several directions

"Time of Flight" data

Can slice through this volume in several directions

"Time of Flight" data

Can slice through this volume in several directions

Diffuse "Rods" of Scattering

Correlations in III "Kagome" planes

"Rod of scattering" Along III direction

E = [0.1, 0.3] meV (Quasi elastic)

Development of 3D Correlations

Sample Dependence of Specific Heat

Sample Dependence of Specific Heat

Sample Dependence of Specific Heat

24 (2012) 052201 (4pp)

Evidence for "stuffing": Yb on Ti site

Evidence for "stuffing": Yb on Ti site

Single crystal sample is best modeled as a stuffed pyrochlore:

Evidence for "stuffing": Yb on Ti site

2.3% excess Yb on the Ti site

Excitations: diffuse, continuum-like?

Excitations: Sharp, conventional magnons

Application of a Field

Field removes diffuse scattering

Spin waves from polarized phase

No structure to inelastic scattering

Spin Wave Excitations

Field Induced Order

Anisotropic Exchange Model

Anisotropic Exchange Model

$$H = \frac{1}{2} \sum_{ij} J_{ij}^{\mu\nu} S_i^{\mu} S_j^{\nu} - \mu_B H^{\mu} \sum_i g_i^{\mu\nu} S_i^{\nu}$$

$$XY \text{ anisotropy enters here}$$

$$J_{01} = \begin{pmatrix} J_2 & J_4 & J_4 \\ -J_4 & J_1 & J_3 \\ -J_4 & J_3 & J_1 \end{pmatrix} \overset{\textbf{4 symmetry}}{\underset{\textbf{allowed exchange}}{\textbf{terms}}}$$

$$H = \sum_{\langle ij \rangle} \{J_{zz} S_i^z S_j^z + J_{\pm} (S_i^+ S_j^- + S_i^- S_j^+) + J_{++} [\gamma_{ij} S_i^+ S_j^+ + \gamma_{ij}^* S_i^- S_j^-] \\ + J_{z\pm} [S_i^z (\zeta_{ij} S_j^+ + \zeta_{ij}^* S_j^-) + i \leftrightarrow j] \},$$

"Quantum Spin Ice"

$$H = \sum_{\langle ij \rangle} \left\{ J_{zz} S_{i}^{z} S_{j}^{z} - J_{\pm} (S_{i}^{+} S_{j}^{-} + S_{i}^{-} S_{j}^{+}) + J_{++} \left[\gamma_{ij} S_{i}^{+} S_{j}^{+} + \gamma_{ij}^{*} S_{i}^{-} S_{j}^{-} \right] \right.$$

$$+ J_{z\pm} \left[S_{i}^{z} (\zeta_{ij} S_{j}^{+} + \zeta_{ij}^{*} S_{j}^{-}) + i \leftrightarrow j \right] \Big\},$$

$$J_{zz} = 0.17, J_{\pm} = 0.05, J_{++} = 0.05, J_{z\pm} = -0.14.$$
 (meV)

110

3.0

Coulomb Phase ("U(1) Spin Liquid")

Coulomb Phase ("U(1) Spin Liquid")

Conclusions and Remaining Questions

Experimentally observed 2D correlated state above Tc

What are the spin correlations from our Hamiltonian?

Sensitivity of ground state to subtle structural effects

What is the role of stuffing in the magnetic ground state?

High field spin waves show us that Yb₂Ti₂O₇ is a Quantum Spin Ice

Exchange is predominantly FM Ising, with quantum fluctuations

Proximity to a Coulomb phase?

Papers

"Two-Dimensional Kagome Correlations and Field Induced Order in the Ferromagnetic XY Pyrochlore Yb₂Ti₂O₇" K.A. Ross, J.P.C. Ruff, C.P. Adams, J.S. Gardner, H.A. Dabkowska, Y. Qiu, J.R.D. Copley, and B.D. Gaulin. Phys. Rev. Lett., **103**, 227202 (2009).

"Dimensional Evolution of Spin Correlations in the Magnetic Pyrochlore, Yb₂Ti₂O_{7"} K.A. Ross, L.R. Yaraskavitch, M. Laver, J.S. Gardner, J. A. Quilliam, S. Meng, J.B. Kycia, D. K. Singh, H.A. Dabkowska, and B.D. Gaulin. Phys. Rev. B., **84**, 174442 (2011).

"Quantum Excitations in Quantum Spin Ice" K.A. Ross, L. Savary, B. D. Gaulin, and L. Balents. Phys. Rev. X **1**, 021002 (2011).

"Single crystals of Yb₂Ti₂O₇ grown by the Optical Floating Zone technique: naturally "stuffed" pyrochlores?" K.A. Ross, Th. Proffen, H. Dabkowska, J.A. Quilliam, L.R. Yaraskavitch, J.B. Kycia, and B.D. Gaulin, arXiv:1208.2281 (2012).