

Fractionalization

- Gapped, topologically ordered phases (two dimensions)
\rightarrow Quasiparticle excitations with fractional quantum numbers

Gapped Z_{2} spin liquid

$$
S=1 \text { "magnon" }
$$

$S=1 / 2$ spinons

- What are distinct types of fractionalization?
- How to describe/classify?
- How to detect in numerics/experiment?

Classification of spin liquids

- In presence of symmetry, there are many gaped Z_{2} spin liquids (X.-G. Wen,)

With symmetry:

Break all symmetry:

Z_{2}

- Can we classify such distinct Z 2 spin liquids?
- Simpler: symmetry classification

Not in this talk: symmetry
Symmetry classes
 Fractionalization clatssses "beyond (types of fractionalixetioionnalization."

Why gapped Z_{2} spin liquids?

- Simple setting to study interplay of symmetry \& topological order
- Recent evidence they exist in simple, fairly realistic models:

J1-J2 square lattice
(H. C. Jiang, H. Yao \& Balents;
L. Wang, Z.-C. Gu, Verstraete, X.-G. Wen)

Kagome lattice
(H. C. Jiang, Z. Y. Weng, D. N. Sheng;
S. Yan, Huse \& White;

Depenbrock, McCulloch \& Schollwöck;
H. C. Jiang, Z. Wang \& Balents)

- Can we find direct evidence for fractionalization in these models?
- Can we tell which Z_{2} spin liquids occur?

Outline

1. Prior work: parton constructions and projective symmetry group (PSG)
2. Review: topological order of gapped Z_{2} spin liquids
3. Fractionalization of $\mathrm{SO}(3)$ spin

Signature in
4. Fractionalization of crystal momentum neutron scattering
5. General symmetry classification

With square lattice space group + time reversal + spin rotation symmetry:

$$
2,098,176=\left(2^{22}-2^{11}\right) / 2+2^{11} \approx 2^{21} \text { symmetry classes }
$$

(Actually even more than this.)

Prior work: projective symmetry group (PSG) classification

- Consider e.g. $\mathrm{S}=1 / 2$ spin model, represent with $\mathrm{S}=1 / 2$ fermionic partons

Hilbert space

- Mean-field Hamiltonian: $H_{M F T}=\sum_{\left(r, r^{\prime}\right)}\left[t f_{r \alpha}^{\dagger} f_{r^{\prime} \alpha}+\Delta\left(f_{r \uparrow}^{\dagger} f_{r^{\prime} \downarrow}^{\dagger}+f_{r^{\prime} \uparrow}^{\dagger} f_{r \downarrow}^{\dagger}\right)+\cdots\right]$

Action of symmetry:

1. Non-trivial gauge transformations: $T_{x}: f_{r \alpha} \rightarrow e^{i \lambda_{r}} f_{r+\boldsymbol{x}, \alpha}$
2. Acts projectively: $T_{x} T_{y}=e^{i \phi} T_{y} T_{x}$

- Classify distinct ways symmetry can act, up to unitary (gauge) equivalence.
- Each such class is called a "PSG." Really, PSGs comprise a particular class of projective representations of the symmetry group
- PSG provides a mean-field symmetry classification

PSG and symmetry classification

- Mean-field + fluctuating gauge field \rightarrow low-energy effective theory. Can be gapped Z_{2} spin liquid.
- Issue 1: Parton description is not an essential property of a Z_{2} spin liquid.
- Issue 2: PSG is a mean-field classification

Other prior work:

- Ying Ran \& Xiao-Gang Wen, 2002, unpublished
- Alexei Kitaev, Ann. Phys. 2006, Appendix F

Z_{2} topological order: particle types

- Two bosons (e and m). One fermion (ε). Also one "trivial" boson (1).
- Often: $e=$ spinon, $m=$ vison, $\varepsilon=$ spinon+vison bound state
- Or: $\varepsilon=$ spinon, $m=$ vison, $e=$ spinon+vison bound state
- Fusion rules: $\epsilon \times \epsilon=m \times m=e \times e=1$

$$
\epsilon \times m=e, \epsilon \times e=m, e \times m=\epsilon
$$

- Mutual statistics:

Superselection sectors

- Cannot locally create single isolated e, m or ε. Create in pairs and separate.
- Topological superselection sectors

- Sectors are closed under action of local operators

Fractionalizing spin

- e-particle could have $S=0,1 / 2,1,3 / 2, \ldots$

- Only integer vs. half-odd-integer spin matters \rightarrow two fractionalization classes
$S \bmod 1$

- Three symmetry classes if only $\mathrm{SO}(3)$ spin rotation symmetry present

Fractionalizing spin

- $S \bmod 1=0,1 / 2 \rightarrow$ Two fractionalization classes for $\mathrm{SO}(3)$

Specify fractionalization classes for all particle types

- Three symmetry classes

Mathematics: projective representations

- $\mathrm{S} \bmod 1=0 \rightarrow R_{s}(2 \pi \hat{n})=1$
- $\mathrm{S} \bmod 1=1 / 2 \rightarrow R_{s}(2 \pi \hat{n})=-1$

- Important: $R_{s}(2 \pi \hat{n})$ must be a constant on each sector. Otherwise one gets a topologically trivial $S=1 / 2$ particle
- These are (the only) two different " Z_{2} central extensions" of $\mathrm{SO}(3)$
- Can summarize in terms of group cohomology: $H^{2}\left(\mathrm{SO}(3), Z_{2}\right)=Z_{2}$

Fractionalizing crystal momentum

- Translation symmetry:

Holds for physical states (1-sector)

- Acting on state with two e-particles:

These operators localized near corresponding e-particles

$$
\begin{gathered}
T_{x} T_{y} T_{x}^{-1} T_{y}^{-1}=1 \\
T_{x}^{e} T_{y}^{e}\left(T_{x}^{e}\right)^{-1}\left(T_{y}^{e}\right)^{-1}= \pm 1
\end{gathered}
$$

Interpretation: e-particle feels 0 or π flux per plaquette

- Note: we assume e and m particles not exchanged under translation. This is "beyond fractionalization." See next talk!

Fractionalizing crystal momentum

- Translation symmetry: 2 fractionalization classes \& 3 fractionalization classes
- These classes all realized in Kitaev toric code model (vary signs of vertex \& plaquette terms)
- Again, there are two " Z_{2} central extensions" of $\mathrm{G}=\mathrm{Z} \times \mathrm{Z}$ translation symmetry
- Group cohomology: $H^{2}\left(G, Z_{2}\right)=Z_{2}$

Fractionalizing crystal momentum: possible neutron signature

- Suppose e-particle (spinon) has $S=1 / 2$ and $T_{x} T_{y} T_{x}^{-1} T_{y}^{-1}=-1$

Bottom of $S=1$ two-spinon continuum:

- Most general irreducible representation in this fractionalization class is twodimensional, given by:

$$
T_{x}=e^{i k_{x}} \sigma^{z} \quad T_{y}=e^{i k_{y}} \sigma^{x}
$$

- Implies four degenerate scattering states with crystal momenta:

$$
\begin{aligned}
& \vec{q}, \vec{q}+(\pi, 0), \vec{q}+(0, \pi), \vec{q}+(\pi, \pi) \\
& \vec{q}=\vec{k}_{1}+\vec{k}_{2}
\end{aligned}
$$

String operators

- To move an e-particle, or to create two isolated e 's, act with string operator:

- $\quad e$ - and m-strings anti-commute at crossing points:

- Loop operators/algebra:

Relation to ground state quantum numbers

- Degenerate ground states can have nontrivial quantum numbers

- Suggests associations: $L_{x}^{e} \simeq\left(T_{x}^{e}\right)^{N_{x}}, L_{x}^{m} \simeq\left(T_{x}^{m}\right)^{N_{x}}, \ldots$
- Action of symmetry on loop operators: $T_{y} L_{x}^{e} T_{y}^{-1} \rightarrow T_{y}^{e}\left(T_{x}^{e}\right)^{N_{x}}\left(T_{y}^{e}\right)^{-1}$
- From this can work out relative momenta among four ground states.

General symmetry group

- Some mathematics...
- Consider symmetry group G, elements $g \in G$, projective representation $\Gamma(g)$

$$
\Gamma\left(g_{1}\right) \Gamma\left(g_{2}\right)=\omega(\underbrace{g_{1}}_{\text {"Factor set" }}, g_{2}) \Gamma\left(g_{1} g_{2}\right), \omega\left(g_{1}, g_{2}\right) \in \underbrace{Z_{2}}_{\text {From fusion rules }}
$$

- Associativity constraint: $\omega\left(g_{1}, g_{2}\right) \omega\left(g_{1} g_{2}, g_{3}\right)=\omega\left(g_{1}, g_{2} g_{3}\right) \omega\left(g_{2}, g_{3}\right)$
- Abelian group structure: $\left(\omega_{A} \omega_{B}\right)\left(g_{1}, g_{2}\right)=\omega_{A}\left(g_{1}, g_{2}\right) \omega_{B}\left(g_{1}, g_{2}\right)$
- "Gauge" transformation:

$$
\Gamma(g) \rightarrow \lambda(g) \Gamma(g) \Longrightarrow \omega\left(g_{1}, g_{2}\right) \rightarrow \lambda^{-1}\left(g_{1}\right) \lambda^{-1}\left(g_{2}\right) \lambda\left(g_{1} g_{2}\right) \omega\left(g_{1}, g_{2}\right)
$$

- Classify factor sets up to "gauge" equivalence.

2nd cohomology group, coefficients in Z_{2}

Fractionalization
class (for one sector)

Square lattice example

- $G=$ Square lattice space group \times time reversal \times spin rotation.
- Square lattice space group generators: $T_{x}, P_{x}, P_{x y}$
- Note that: $T_{y}=P_{x y} T_{x} P_{x y}^{-1}$
- Time reversal \mathcal{T}
- Spin rotation (by θ about \hat{n}-axis): $R(\theta \hat{n})$

- Generators + relations specify the symmetry class in one sector:

$$
\begin{array}{r}
P_{x}^{2}=\sigma_{p x} \\
P_{x y}^{2}=\sigma_{p x y} \\
\left(P_{x} P_{x y}\right)^{4}=\sigma_{p x p x y} \\
T_{x} T_{y} T_{x}^{-1} T_{y}^{-1}=\sigma_{t x t y} \\
T_{x} P_{x} T_{x} P_{x}^{-1}=\sigma_{t x p x} \\
T_{y} P_{x} T_{y}^{-1} P_{x}^{-1}=\sigma_{t y p x} \\
\mathcal{T}^{2}=\sigma_{T}
\end{array}
$$

$$
\begin{array}{r}
\mathcal{T} T_{x} \mathcal{T}^{-1} T_{x}^{-1}=\sigma_{T t x} \\
\mathcal{T} P_{x} \mathcal{T}^{-1} P_{x}=\sigma_{T p x} \\
\mathcal{T} P_{x y} \mathcal{T}^{-1} P_{x y}=\sigma_{T p x y} \\
R(2 \pi \hat{n})=\sigma_{R} \\
R(\theta \hat{n}) \mathcal{T}=\mathcal{T} R(\theta \hat{n}) \\
R(\theta \hat{n}) P_{x}=P_{x} R(\theta \hat{n}) \\
R(\theta \hat{n}) P_{x y}=P_{x y} R(\theta \hat{n}) \\
R(\theta \hat{n}) T_{x}=T_{x} R(\theta \hat{n}) \\
\text { (+Lie algebra of spin rotations) }
\end{array}
$$

- Here the σ 's $= \pm 1$
- $\quad 11$ independent Z_{2} parameters $\rightarrow \mathrm{H}^{2}\left(\mathrm{G}, \mathrm{Z}_{2}\right)=\left(\mathrm{Z}_{2}\right)^{11}$

Square lattice example

- \quad Fractionalization classes $=$ elements of $\mathrm{H}^{2}\left(\mathrm{G}, \mathrm{Z}_{2}\right)=\left(\mathrm{Z}_{2}\right)^{11}$
- Specify fractionalization class for e and m independently \rightarrow determines class for ε
- Accounting for relabeling $e \leftrightarrow m:\left(2^{22}-2^{11}\right) / 2+2^{11} \approx 2^{21}$ symmetry classes
- How to determine ε fractionalization class?
- Take product, e.g: $\left(\mathcal{T}^{\epsilon}\right)^{2}=\left(\mathcal{T}^{e}\right)^{2}\left(\mathcal{T}^{m}\right)^{2}$
- Except: $\left(P_{x}^{\epsilon} P_{x y}^{\epsilon}\right)^{4}=\bar{\pi}\left(P_{x}^{e} P_{x y}^{e}\right)^{4}\left(P_{x}^{m} P_{x y}^{m}\right)^{4}$

Sign from mutual

- "Twisting" of H^{2} group product: statistics

$$
\omega_{\epsilon}\left(g_{1}, g_{2}\right)=\omega_{\text {twist }}\left(g_{1}, g_{2}\right) \omega_{e}\left(g_{1}, g_{2}\right) \omega_{m}\left(g_{1}, g_{2}\right)
$$

How are these results established?

- General arguments
- Explicit construction for Kitaev toric code model

PSG classification revisited

- (Focus on $S=1 / 2$ fermionic partons, for concreteness.)
- PSG classifies projective representations up to unitary equivalence. Compared to fractionalization class, this includes extra (presumably nonuniversal) information.
- For any PSG, can read off fractionalization class for ε.
- Given PSG + effective theory, can compute fractionalization class for m.
- On square lattice, Wen found $272 \mathrm{Z}_{2}$ PSGs (for a single sector). Should be compared with 2^{10} classes for same sector (all have $S=1 / 2$, fixes one parameter).
- Some classes not realized (for this particular parton theory)
- There are pairs of distinct PSGs belonging to same class. But in all cases I know, one PSG is gapless. Is there an example of two distinct Z_{2}-gapped PSGs, belonging to same fractionalization class?

Open issues

- Symmetry classes "beyond fractionalization" (see next talk)
- Full classification of gapped Z_{2} spin liquids
- Generalize to other topological orders. (We have an answer for Abelian topological order with only translation + local symmetries.)
- Three dimensions?
- How can symmetry class be determined given ground state wavefunction, excited states? Application to numerics on kagome \& $\mathrm{J}_{1} \mathrm{~J}_{2}$ Heisenberg models?
- Experimental signatures?
- Can we find a candidate gapped spin liquid material?

