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Fractionalization

What are distinct types of fractionalization?

How to describe/classify?

How to detect in numerics/experiment?

Gapped, topologically ordered phases (two dimensions)                      
→ Quasiparticle excitations with fractional quantum numbers

Charge e electron Charge e/3 Laughlin 
quasiparticles

ν = 1/3 Fractional 
quantum Hall liquid 

Gapped Z2 
spin liquid

S=1 “magnon” S=1/2 spinons



In presence of symmetry, there are many gapped Z2 spin liquids 

Z2A Z2B Z2CWith symmetry:

Break all symmetry:

................

Z2

Can we classify such distinct Z2 spin liquids?

Symmetry classes Fractionalization classes 
(types of fractionalization)

Z2

Symmetry class 1

Distinct phases: 
1a, 1b, 1c, ...

Symmetry class 2

Distinct phases: 
2a, 2b, 2c, ...

.....

Not in this talk: symmetry 
classes “beyond 

fractionalization.”       
(Next talk.)



Can we tell which Z2 spin liquids occur?

2

Simple setting to study interplay of symmetry & topological order

J1-J2 square lattice Kagome lattice



1.
(PSG) 

2. 2 spin liquids

3. Fractionalization of SO(3) spin

4. Fractionalization of crystal momentum

5.

2,098,176 = (222 - 211)/2 + 211 ≈ 221 symmetry classes

Signature in 
neutron scattering



 

Consider e.g. S=1/2 spin model, represent with S=1/2 fermionic partons
Hilbert space
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Tx : fr↵ ! eiλrfr+x,↵

 

Each such class is called a “PSG.” Really, PSGs comprise a particular class of 
representations of the symmetry group

 

Action of symmetry: 

1.

2. TxTy = ei�TyTx



 

→
Can be gapped Z2 spin liquid.

Issue 1: Parton description is not an essential property of a Z2 spin liquid.

 

Ying Ran & Xiao-Gang Wen, 2002, unpublished

Other prior work:



Z2

Fusion rules:

Mutual statistics:        

Two bosons (e and m).  One fermion (ε

Often: e = spinon, m ε

Or: ε = spinon, m e

✏⇥ ✏ = m⇥m = e⇥ e = 1
✏⇥m = e , ✏⇥ e = m , e⇥m = ✏

✏ e

m

✓ = ⇡

✓ = ⇡ ✓ = ⇡



Cannot locally create single isolated e, m or ε. Create in pairs and separate.

Topological superselection sectors

Sectors are closed under action of local operators

Contains  physical spin 
model states (closed system)

ε - fermion

e - bosonm



e- S=0, 1/2, 1, 3/2, ...

e, S=1/2

+

1, S=1 (“magnon”)

=

e, S=3/2

→ two fractionalization classes

e m ε
1/2 0 1/2
0 1/2 1/2

1/2 1/2 0
0 0 0

Same, under  
e↔m

Smod1

Three symmetry classes if SO(3) spin rotation symmetry present



S mod 1 = 0, 1/2 → Two fractionalization classes for SO(3)

Three symmetry classes

These are (the only) two different “Z2 central extensions” of SO(3)

Can summarize in terms of group cohomology:H2(SO(3), Z2) = Z2

Specify fractionalization 
classes for all particle types

S mod 1 = 0 → 

S mod 1 = 1/2 → 

Important:                  must be a constant on each sector. Otherwise one gets a 
S=1/2 particle 

Rs(2⇡n̂) = 1

Rs(2⇡n̂) = �1

Rs(2⇡n̂)



Translation symmetry: TxTy = TyTx

TxTyT
�1
x T�1

y = 1

Holds for physical 
states (1-sector)

TxTyT
�1
x T�1

y = 1

T e
xT

e
y (T

e
x)

�1(T e
y )

�1 = ±1

Note: we assume e and m particles not exchanged under translation. This is 
“beyond fractionalization.” See next talk!

� = 0, ⇡
Interpretation: e-particle feels 

0 or π

Tx = T e
x(1)T

e
x(2)

e1

e2

e1

e2

These operators localized near 
corresponding e-particles

Acting on state with two e-particles:



e m ε
-1 1 -1

-1 -1 1

1 1 1

TxTyT
�1
x T�1

y

Translation symmetry: 2 
fractionalization classes & 
3 fractionalization classes

These classes all realized in 

plaquette terms)

Again, there are two “Z2 central extensions” of G = Z × Z translation symmetry

Group cohomology: H2(G,Z2) = Z2



TxTyT
�1
x T�1

y = �1

Bottom of S=1 
two-spinon 
continuum:

Suppose e-particle (spinon) has S=1/2 

Emin[~k] = Emin[~k + (⇡, 0)] = Emin[~k + (0, ⇡)]

Extra periodicity in k:

(π,0)

(0,π)

Most general irreducible representation 
in this fractionalization class is two-

Tx = eikx�z Ty = eiky�x

Implies four degenerate scattering 
states with crystal momenta:

~q = ~k1 + ~k2

~q, ~q + (⇡, 0), ~q + (0, ⇡), ~q + (⇡, ⇡)



e-particle, or to create two isolated e’s, act with string operator:

e- and m-strings anti-commute at crossing points:

Loop operators/algebra:

Lm
y Le

x

{Le
x, L

m
y } = 0

{Le
y, L

m
x } = 0

D=4 irrep (4-fold 
ground state 
degeneracy)

(Le
x,y)

2 = (Lm
x,y)

2 = 1



Act with (T e
x)

Nx

Nx

Ny

Suggests associations: Le
x ' (T e

x)
Nx , Lm

x ' (Tm
x )Nx , . . .

Action of symmetry on loop operators: TyL
e
xT

�1
y ! T e

y (T
e
x)

Nx(T e
y )

�1

From this can work out  momenta among four ground states.



Some mathematics...

Consider symmetry group G

�(g1)�(g2) = !(g1, g2)�(g1g2), !(g1, g2) 2 Z2

From fusion rules“Factor set”

Abelian group structure:

“Gauge” transformation:

!(g1, g2)!(g1g2, g3) = !(g1, g2g3)!(g2, g3)

(!A!B)(g1, g2) = !A(g1, g2)!B(g1, g2)

�(g) ! λ(g)�(g) =) !(g1, g2) ! λ�1(g1)λ
�1(g2)λ(g1g2)!(g1, g2)

Factor set classes also form Abelian group:  H2(G,Z2)

2nd cohomology 

in Z2

Fractionalization 
class (for one sector)

Element of H2(G,Z2)

g 2 G �(g)



G = Square lattice space group × × spin rotation.

Square lattice space group generators:  Tx, Px, P

Note that: 

Spin rotation (by θ about   -axis): 

Generators + relations specify the symmetry class in one sector:

Px

Pxy

T

n̂ R(✓n̂)

Here the σ’s = ±1

11 independent Z2 parameters → H2(G,Z2) = (Z2)11

P 2
x = �px

P 2
xy = �pxy

(PxPxy)
4 = �pxpxy

TxTyT
�1
x T�1

y = �txty

TxPxTxP
�1
x = �txpx

TyPxT
�1
y P�1

x = �typx

T 2 = �T

T TxT �1T�1
x = σTtx

T PxT �1Px = σTpx

T PxyT �1Pxy = σTpxy

R(2⇡n̂) = σR

R(✓n̂)T = T R(✓n̂)

R(✓n̂)Px = PxR(✓n̂)

R(✓n̂)Pxy = PxyR(✓n̂)

R(✓n̂)Tx = TxR(✓n̂)

Ty = PxyTxP
�1
xy



Fractionalization classes = elements of H2(G,Z2) = (Z2)11 

Specify fractionalization class for e and m independently                                 
→ determines class for ε

Accounting for relabeling e↔m: (222-211)/2 + 211 ≈ 221 symmetry classes

How to determine ε fractionalization class?

2π rotation

Except:

Sign from mutual 
statistics

Take product, e.g:  (T ✏)2 = (T e)2(T m)2

(P ✏
xP

✏
xy)

4 = �(P e
xP

e
xy)

4(Pm
x Pm

xy)
4

“Twisting” of H2 
group product:

!✏(g1, g2) = !twist(g1, g2)!e(g1, g2)!m(g1, g2)



General arguments



(Focus on S=1/2 fermionic partons, for concreteness.)

Compared to fractionalization class, this includes extra (presumably non-

For any PSG, can read off fractionalization class for ε.

m.

On square lattice, Wen found 272 Z2 PSGs (for a  sector). Should be 
compared with 210 S=1/2
parameter).

Some classes not realized (for this particular parton theory)

There are pairs of distinct PSGs belonging to same class. But in all cases I 
know, one PSG is gapless. Is there an example of two distinct Z2-gapped 
PSGs, belonging to same fractionalization class?



Symmetry classes “beyond fractionalization” (see next talk)

2 spin liquids

topological order with only translation + local symmetries.)

Three dimensions?

excited states? Application to numerics on kagome & J1-J2 Heisenberg models?

Experimental signatures?


