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Fractionalization

® Gapped, topologically ordered phases (two dimensions)
— Quasiparticle excitations with fractional quantum numbers

o * o o o v = 1/3 Fractional

Charge ¢/3 Laughlin ~ quantum Hall liquid
quasiparticles
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Charge e electron

® What are distinct types of fractionalization?
® How to describe/classify?

® How to detect in numerics/experiment?




Classification of spin liquids

® In presence of symmetry, there are many gapped Z» spin liquids (X.-G. Wen, ....)
With symmetry:  7Z-A />B sz/...... ..........
Break all symmetry:
® (Can we classify such distinct Z2 spin liquids?
® Simpler: symmetry classification
( . . . \
7> spin liquids
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Symmetry class 1 Symmetry class 2
Distinct phases: Distinct phases: |
la, 1b, Ic, ... 2a,2b, 2c, ...
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Not in this talk: symmetry
Svmmetry classes 6 Fractionalization cladssses “beyond
y t (types of fractionalifedtdionalization.”
(Next talk.)




Why gapped 7, spin liquids?

® Simple setting to study interplay of symmetry & topological order
® Recent evidence they exist in simple, fairly realistic models:
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J1-J2 square lattice Kagome lattice
(H. C. Jiang, H. Yao & Balents; (H. C. Jiang,Z. Y. Weng, D. N. Sheng;
L. Wang, Z.-C. Gu, Verstraete, X .-G. Wen) S. Yan, Huse & White;
Depenbrock, McCulloch & Schollwock;
H. C.Jiang, Z. Wang & Balents)
® Can we find direct evidence for fractionalization in these models?
® Can we tell which Z; spin liquids occur?




1. Prior work: parton constructions and projective symmetry group
(PSG)

2. Review: topological order of gapped Z» spin liquids
3. Fractionalization of SO(3) spin Signature in

: o / neutron scattering
4. Fractionalization of crystal momentum

5. General symmetry classification

\

With square lattice space group + time reversal + spin rotation symmetry:
2,098,176 = (222 - 211)/2 + 211 = 221 gymmetry classes

(Actually even more than this.)




Prior work: projective symmetry group (PSG) classification

(X.G. Wen)
Consider e.g. S=1/2 spin model, represent with S=1/2 fermionic partons

Hilbert space

1
g — —f(]ﬁaﬁfﬁ + + S=1/2 doublet (physical states) S=1/2, G=0

fT f —1 Unphysical doublet S=0, G=1/2
o

Mean-field Hamiltonian: Hyrr = Z tflof e + A(f:Tf:/¢ + fIITf;l) +-o-]
(r,7)

Action of symmetry:

Non-trivial gauge transformations: 1), : f,, — e frda.o

Acts projectively: 1,1, = ewTyTaj

Classify distinct ways symmetry can act, up to unitary (gauge) equivalence.

Each such class is called a “PSG.” Really, PSGs comprise a particular class of
projective representations of the symmetry group

PSG provides a mean-field symmetry classification




PSG and symmetry classification

® Mean-field + fluctuating gauge field — low-energy effective theory.
Can be gapped Z> spin liquid.

® [ssue 1: Parton description is not an essential property of a Z» spin liquid.

® Issue 2: PSG is a mean-field classification

Other prior work:

® Ying Ran & Xiao-Gang Wen, 2002, unpublished

® Alexei Kitaev, Ann. Phys. 2006, Appendix F




7> topological order: particle types

® Two bosons (e and m). One fermion (€). Also one “trivial” boson (1).
® Often: e = spinon, m = vison, € = spinon+vison bound state
® Or: ¢ = spinon, m = vison, e = spinon+vison bound state

® Fusionrules: exe=mxm=exe=1
EXM=€e,eEXEe=Mm,eXm=¢

® Mutual statistics:




Superselection sectors

® (Cannot locally create single isolated e, m or €. Create in pairs and separate.

® Topological superselection sectors

¥

1 - “Trivial” sector ¢ - fermion

Contains all physical spin
model states (closed system)

4 o

m - vison (boson) e - boson

® Sectors are closed under action of local operators




Fractionalizing spin

® e-particle could have §=0, 1/2,1, 3/2, ...

e,S=1/2 1, 5=1 (“magnon”) e, S=3/2

® Only integer vs. half-odd-integer spin matters — two fractionalization classes

:
7 1/2 0 172 > Same, under relabeling
T 0 12 | 12 e
1/2 1/2 0
0 0 0

® Three symmetry classes if only SO(3) spin rotation symmetry present




Fractionalizing spin

S mod 1 =0, 1/2 — Two fractionalization classes for SO(3)

Specify fractionalization
classes for all particle types

Three symmetry classes

Mathematics: projective representations
Smod1=0— R;(2mn) =1 ¢
Smod1=12— Rs(2mn) = —1

Important: Rs(2772) must be a constant on each sector. Otherwise one gets a
topologically trivial $=1/2 particle

These are (the only) two different “Z, central extensions” of SO(3)

Can summarize in terms of group cohomology: H 2(80(3), Zy) = Zsy




Fractionalizing crystal momentum

® Translation symmetry: Ioly = 1yls * Holds for physical
T,T,T, ' T, =1 states (1-sector)

® Acting on state with two e-particles:

T, @ T€<2> e
O

These operators localized near
corresponding e-particles

>
T,T,T, ' T, =1
Interpretation: e-particle feels
¢ =0,7 0 or 7t flux per plaquette
TTOTH) NI T =41 L v

® Note: we assume e and m particles not exchanged under translation. This is
“beyond fractionalization.” See next talk!




Fractionalizing crystal momentum

Translation symmetry: 2
fractionalization classes &
3 fractionalization classes

These classes all realized in
Kitaev toric code model
(vary signs of vertex &

1 1 1 plaquette terms)

® Again, there are two “Z» central extensions” of G = Z x Z translation symmetry

®  Group cohomology: H?(G, Zy) = Z,




Fractionalizing crystal momentum: possible neutron signature

® Suppose e-particle (spinon) has $=1/2 and 111, 1Ty_ |

Extra periodicity in k:

-, — —

Bottom of S=1 Erninlk] = Eminlk + (7,0)] = Enin[k + (0, )]

two-spmon .
continuum:

® Most general irreducible representation
in this fractionalization class is two-
dimensional, given by:

Tzc _ ezkzw g% Ty _ ezk:y gx

® [Implies four degenerate scattering
states with crystal momenta:

¢+ (m,0),¢+(0,7), ¢+ (7, )




String operators

® To move an e-particle, or to create two isolated e’s, act with string operator:

@ —

® ¢- and m-strings anti-commute at crossing points:

/ < = (-1)\/\

® [oop operators/algebra:

L' =0 » D=4 irrep (4-fold
m ground state
L } =0 degeneracy)

= (L) =1




Relation to ground state quantum numbers

® Degenerate ground states can have nontrivial quantum numbers

A

w| e | =P |—e

Act with(T¢) ™=

v

< >
Ny

® Suggests associations: LS ~ (TS )NC" , L~ (Tm)Nw

® Action of symmetry on loop operators: Ty, LT, LT y (T)Ne (Tye)_1

® From this can work out relative momenta among four ground states.




General symmetry group

Some mathematics...

Consider symmetry group G, elements ¢ € (5, projective representation F( g)

['(91)T'(g2) = w(g1,92)1'(9192), w(g1,92) € Z2

“Factor set” From fusion rules
Associativity constraint: w(g1,92)w(g192,93) = w(g1, 9293)w(g2, g3)
Abelian group structure: (wawg) (91, 92) = wa(91, g2)wr (91, g2)

“Gauge” transformation:

I'(9) = Mg)T(9) = w(g1,92) = A (g1)A " (92)Mg192)w (g1, 92)

Classify factor sets up to “gauge” equivalence. 2nd cohomology
group, coefficients
Factor set classes also form Abelian group: f1 2 (G, Z 2)/ in Z»

Fractionalization 2
ﬁ El t of
class (for one sector) ement of (G7 Z 2)




Square lattice example

T, T, T, T, = oty

TxPa:Ta:ch_l — Otxpx
—1p—1

TyP:I:Ty Px = Utypx

G = Square lattice space group X time reversal X spin rotation.

Square lattice space group generators: Ty, Px, Py T \
Note that: T} = Py, T, P,/ — T X
Time reversal T — T '/' \
Spin rotation (by 6 about n-axis): R(6n) P ’ Py
xr
Generators + relations specify the symmetry class in one sector:
P2 =0, TTT 'T, ' =ore
-1 .
Pa?y :pry TP:B7.1 Px—UTpx
(PePry)* = Opapay TPeyT ™" Pry = 0Tpay

R(2mn) = ogr

R(On)T = TR(6n)
R(6n)P, = P, R(0n)
R(03)Pyy = Puy R(0)

T2 = 5 R(OR)T, = T, R(67)

(+ Lie algebra of spin rotations)

Here the 0’s = =1

11 independent Z, parameters — H2(G,Z2) = (Z2)!!




Square lattice example

® Fractionalization classes = elements of H2(G,Z») = (Z»)!!

® Specify fractionalization class for e and m independently
— determines class for €

® Accounting for relabeling e<>m: (222-211)/2 + 211 = 221 symmetry classes

® How to determine € fractionalization class?
® Take product, e.g: (7°)* = (T)*(T™)?

® FExcept: (PiPg,)* = <(PsPs) (PP

Sign from mutual

® “Twisting” of H2 statistics \

group product:
) O

27 rotation

we(gly 92) — Wiwist (gh gQ)We(gla 92)wm(gla g2




How are these results established?

® (General arguments

® [Explicit construction for Kitaev toric code model




PSG classification revisited

(Focus on $=1/2 fermionic partons, for concreteness.)

PSG classifies projective representations up to unitary equivalence.
Compared to fractionalization class, this includes extra (presumably non-
universal) information.

For any PSG, can read off fractionalization class for €.
Given PSG + effective theory, can compute fractionalization class for m.

On square lattice, Wen found 272 Z> PSGs (for a single sector). Should be
compared with 219 classes for same sector (all have S=1/2, fixes one
parameter).

Some classes not realized (for this particular parton theory)

There are pairs of distinct PSGs belonging to same class. But in all cases I
know, one PSG is gapless. Is there an example of two distinct Z>-gapped
PSGs, belonging to same fractionalization class?




Open 1ssues

® Symmetry classes “beyond fractionalization” (see next talk)
® Full classification of gapped Z» spin liquids

® Generalize to other topological orders. (We have an answer for Abelian
topological order with only translation + local symmetries.)

® Three dimensions?

® How can symmetry class be determined given ground state wavefunction,
excited states? Application to numerics on kagome & Ji-J> Heisenberg models?

® [Experimental signatures?

® (Can we find a candidate gapped spin liquid material?




