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Thinning of a Superfluid film

• The film is thinner at the transition, and in the superfluid phase
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What’s so special about Dirichlet 
boundary conditions?

Dirichlet boundary conditions tend to suppress ordering in a film: 
According to Ginzburg and Landau, the ordering temperature is 
suppressed by an amount proportional to            where L is the film 
thickness 

When Dirichlet boundary conditions apply, changing film 
thickness is like changing temperature in the vicinity of the critical 
point
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The general question:
What influence does the combination of boundary conditions and 

dimensionality exert on the critical casimir force?

Focusing on the Ising model, we look at three cases in which exact 
solutions are available

1. The one dimensional Ising model (zero dimensional film)
2. The two dimensional Ising model (one dimensional film)
3. The four dimensional O(1) model (three dimensional film)

We consider three kinds of boundary conditions: periodic, Dirichlet 
and free
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General scaling form of the critical Casimir 
force

For a one-dimensional system:



In the case of the one-dimensional Ising model, starting with the transfer 
matrix

with eigenvectors

and corresponding eigenvalues

then



In the case of periodic boundary conditions

and for the free energy, A(L)

Given the correlation length,    , where
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For free boundary conditions

which means that



For free boundary conditions

which means that

No critical Casimir force!



The continuous one-dimensional O(1) model
Starting with the effective Hamiltonian

the partition function is given by

Here, the eigenvalues of the corresponding transfer matrix satisfy

with associated eigenvalues



The continuous one-dimensional O(1) model
Starting with the effective Hamiltonian

the partition function is given by

Here, the eigenvalues of the corresponding transfer matrix satisfy

with associated eigenvalues width over which T operates



The continuous version of the transfer matrix product

In the case of periodic boundary conditions

For Dirichlet boundary conditions

And for free boundary conditions
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The eigenvalues of the Schroedinger-like equation

The eigenfunctions associated with the two lowest eigenvalues



The “critical point” is at r = -∞

Periodic boundary conditions:

Dirichlet boundary conditions:

Free boundary conditions:



In the scaling limit (r  -∞) the only boundary conditions yielding a 
critical Casimir force are periodic, with

The same result holds for higher spin versions of the one 
dimensional Ising model



The two dimensional Ising model
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In the case of free boundary conditions
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In the case of periodic boundary conditions
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Both Casimir forces
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A four dimensional “bulk” and a three 
dimensional “film”

The critical behavior of the bulk is, to within logarithmic 
corrections, described by mean field theory.

However, the critical behavior of the film is non-classical.

A complication: the dominant contribution to the renormalized version 
of the effective Hamiltonian for the bulk system has the Ginzburg-
Landau-Wilson form with a fourth order coupling constant that is quite 
small. In principle, this is the “starting” effective Hamiltonian of the 
film.

How do we evaluate the partition function—and especially the Casimir 
force—of the non-classical film?



Transformation from a continuous spin to a discrete model

Given an effective Hamiltonian on a lattice

and associated partition function

the partition function can be recast in terms of a product of transfer 
matrices



where 

We can also write
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Figuratively, the lattice looks like this:



If we associated the j’s in the eigenfunction expansion of the transfer 
matrix with the bonds, for a particular realization of this approach to the 
calculation of the partition function, then one term in the multiple sum 
for that quantity looks like this: 
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A truncated version of the model

Keep only the two largest eigenvalues of the transfer matrix. Then, 
there are two types of bond and, in d dimensions, d+1 types of vertex. 
For example in two dimensions, the three possible kinds of vertex are



Because the eigenfunction      has odd parity, there can only be an even 
number of it at a given vertex.

The Monte Carlo method: “bond-flipping,” plaquette by plaquette.

One possible approach in 2D:TMRG (W. Lay and J. Rudnick, PRL 88 
(5), 057203 (2002))



Note: two kinds of 
lines and three kinds 
of vertex



The entropy, defined as         (squares) and               (circles)



Keeping the four largest eigenvalues of the 
transfer matrix

Now there are four kinds of bond and 17 vertices—and a complication. 
For some of the vertices, the contribution to the partition function is 
negative.

Example of  a plaquette “move.”

first even eigenstate

second even eigenstate
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However, some of the 17 possible vertex values contribute a negative 
factor to the partition function, and a plaquette move can turn a 
configuration that contributes positively to the partition function into a 
configuration that yields a negative contribution.

10 negative vertices       11 negative vertices



The solution: evaluate properties for negative and positive 
configurations separately

The entropy, defined in terms of        , as a function of reduced 
temperature, r.



The calculation in a three dimensional system

If we keep the two largest eigenvalues, there are two bonds and four 
vertices. If we keep the four largest eigenvalues there are four bonds 
and 44 vertices.
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Approach to the calculation of the Casimir force

•First, write the order parameter in the film in terms of a mean field 
profile multiplied by an amplitude that varies in the d-1 dimensional 
region occupied by that film

•Then, formulate the change in the effective Hamiltonian of the film 
induced by a change in the thickness of the film

•This gives rise to a quantity that can be determined by a Monte Carlo 
calculation

•Finally, subtract the result for that quantity from the mean field free 
energy per unit volume of the bulk system



Writing

We have for the GLW effective Hamiltonian

Defining

The effective Hamiltonian becomes
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The L-derivative of the effective Hamiltonian is

and the Casimir force is given by

where      is the mean field bulk free energy
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Casimir force, as a function of unrenormalized reduced temperature, r, 
for a 10x10x10 film


