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We repont dielectric constant measurements showing critical Auctuation-induced thinning of *He films
near the superfluid transition.  The films are adsorbed on a stack of copper electrodes suspended al
different heights above bulk liquid. We calibrate the measurements by assuming that the film thickness
away from the transition region at different heights i accurntely given by theory. The thinning is
found to be consistent with fnite-size scaling, if the value of the scaling function for each thickness is
normalized by 15 value at the minimuwm.
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FIG. 2. (a) Free-energy scaling function versus L&, where &
is the bulk cormlation length, taken to be positive for T < T,
arl negative for T = T_. (b Casimir force scaling function




What’s so sPecial about Dirichlet

boundary conditions?

Dirichlet boundary conditions tend to suppress ordering in a film:
According to Ginzburg and Landau, the ordering temperature 1s
suppressed by an amount proportional to (r/L)* where L is the film
thickness

When Dirichlet boundary conditions apply, changing film
thickness 1s like changing temperature in the vicinity of the critical
point
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The general question:

What influence does the combination of boundary conditions and
dimensionality exert on the critical casimir force?

Focusing on the Ising model, we look at three cases in which exact
solutions are available

1. The one dimensional Ising model (zero dimensional film)
2. The two dimensional Ising model (one dimensional film)
3. The four dimensional O(1) model (three dimensional film)

We consider three kinds of boundary conditions: periodic, Dirichlet
and free




The one dimensional Ising model
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General scaling form of the critical Casimir
force

E Casimir — 4

For a one-dimensional system:
1
. 1/v
Fasimir = 7 F(TL'/")

or

1
=G(L/8)




In the case of the one-dimensional Ising model, starting with the transfer
matrix

Nen| —3J
T e e
o (}.—_J'j J {}.ISJ

)

with eigenvectors

0)
and corresponding eigenvalues

Ae = 2cosh3J
Ao = 2sinh 3J

T = |e)A\.le| + |0) A\, (0]




In the case of periodic boundary conditions
Tr T*

and for the free energy, A(L)
AL) = —kgTlZ(L)

\ L
= —LkgTIn)\. —kgTln 1—1—()\—0) ]

Given the correlation length, .~ , where

by
-:E — ]_ll,-"lla ].]].(r\ell,-"ff‘\ﬂ}

A(L) — fBL — k‘BTln (1 -+ G_L/g)
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For free boundary conditions

Z = (11)TL<1>

= 2(e|T"|e)
= 2\l

which means that
DA(L)
0L

— fB=0




For free boundary conditions

Z = (11)TL<1>

2(e|T"|e)
2\

which means that
DA(L)
0L

No critical Casimir force!

— fB=0




The continuous one-dimensional O(1) model

Starting with the effective Hamiltonian

H(m(x)) = / { (dn;(;::) ) d -+ r--m(.-;:)z + um[.rﬁ} dx
oLr

the partition function 1s given by

Z = /‘D-;;;_(,-;:) exp [—H(m(x))]

Here, the eigenvalues of the corresponding transfer matrix satisfy

2
d=\W(m) . |
- d CR (rm? + um*)W;(m) = N\ m)
dm x

with associated eigenvalues
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The continuous version of the transfer matrix product

2
(m| H T(x)|m') = Z Uy (m) Wy (m e M irz=r1)

r=1rq [
In the case of periodic boundary conditions

Z(L)y=>) e Mt

[

For Dirichlet boundary conditions

Z(L) =) e M0 (0)°

l

And for free boundary conditions

Y ek (/OO \I!l(a:)dx>2

l — OO




The eigenvalues of the Schroedinger-like equation




The “critical point” 1s at » = -00

\ 1
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Periodic boundary conditions:

Z(L) — e Mb el

Dirichlet boundary conditions:

Z(L) — e MEU(0)? +e M2l wy(0)% + ..
= e My (02 4. ..

Free boundary conditions:

Z(L) — e ML (/_O; \Ifl(:v)d:v)2+e>‘2l’ (/_O; \Ifg(:v)da:>2+...

2

_ el (/_O;qfl(x)dx) +.




In the scaling limit (» -o0) the only boundary conditions yielding a
critical Casimir force are periodic, with

L e_L/E
E1+eL/S

G(L/E) =

The same result holds for higher spin versions of the one
dimensional Ising model




The two dimensional Ising model
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In the case of free boundary conditions

PHYSICAL REVIEW B VOLUME 44, NUMBER 15 15 OCTOBER 1991-1

Surface ordering and finite-size effects in liquid-crystal films

Hao Li, Maya Paczuski, Mehran Kardar, and Kerson Huang
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In the case of periodic boundary conditions

PHYSICAL REVIEW VOLUME 185, NUMBER 2 10 SEPTEMBER 1969

Bounded and Inhomogeneous Ising Models. I. Specific-Heat
Anomaly of a Finite Lattice

ArTHUR E. FERDINAND* AND MicHaeL E. FISHER
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Foperiodic = # / dQv/# + Q2 [tanh V22 + 02 - 1]
It = 7L/
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Both Casimir forces

fperiodic




A four dimensional “bulk’ and a three
dimensional “film”

The critical behavior of the bulk 1s, to within logarithmic
corrections, described by mean field theory.

However, the critical behavior of the film i1s non-classical.

A complication: the dominant contribution to the renormalized version
of the effective Hamiltonian for the bulk system has the Ginzburg-
Landau-Wilson form with a fourth order coupling constant that is quite

small. In principle, this is the “starting” effective Hamiltonian of the
film.

How do we evaluate the partition function—and especially the Casimir
force—of the non-classical film?




Transformation from a continuous spin to a discrete model

Given an effective Hamiltonian on a lattice

H = Z —rs? + Z (s; — sk) ‘|'ZU31

[,k n.n.

and associated partition function

— / ]| dsi exp(—H)

the partition function can be recast in terms of a product of transfer
matrices

Z = /HdSl H TSl,Sk

[,k n.n.




where

r

4d

T = -

—(s7 4+ sk)? — 5

We can also write

T Sl,Sk ng Sl jwj(sk)

Figuratively, the lattice looks like this:




If we associated the j’s in the eigenfunction expansion of the transfer
matrix with the bonds, for a particular realization of this approach to the
calculation of the partition function, then one term in the multiple sum
for that quantity looks like this:

1
T

The indicated vertex carries the factor

/ " s (s) b (@)bro () (s)ds




A truncated version of the model

Keep only the two largest eigenvalues of the transfer matrix. Then,
there are two types of bond and, in d dimensions, d+1 types of vertex.
For example in two dimensions, the three possible kinds of vertex are

/ " u(e) de, / " a(@)*de, and / T (@) s () da




Because the eigenfunction Y2 has odd parity, there can only be an even
number of it at a given vertex.

One possible approach in 2D:TMRG (W. Lay and J. Rudnick, PRL 88
(5), 057203 (2002))

|The Monte Carlo method: “bond-flipping,” plaquette by plaquette.




Note: two kinds of
lines and three kinds
of vertex
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Keeping the four largest eigenvalues of the
transfer matrix

Now there are four kinds of bond and 17 vertices—and a complication.
For some of the vertices, the contribution to the partition function 1s

negative.

Example of a plaquette “move.”

first even eigenstate

first odd eigenstate
second odd eigenstate

second even eigenstate




However, some of the 17 possible vertex values contribute a negative
factor to the partition function, and a plaquette move can turn a
configuration that contributes positively to the partition function into a
configuration that yields a negative contribution.

I
,,,@7

10 negative vertices 11 negative vertices




The solution: evaluate properties for negative and positive
configurations separately

The entropy, defined in terms of <822 ), as a function of reduced
temperature, 7.




The calculation 1n a three dimensional system

If we keep the two largest eigenvalues, there are two bonds and four
vertices. If we keep the four largest eigenvalues there are four bonds
and 44 vertices.

Sample configuration Entropy function

L 1 L L L L
k’ 2 3
o _o|
.o' L
..o L
K
K 4




Approach to the calculation of the Casimir force

First, write the order parameter in the film in terms of a mean field
profile multiplied by an amplitude that varies in the d-1 dimensional
region occupied by that film

*Then, formulate the change in the effective Hamiltonian of the film
induced by a change 1n the thickness of the film

*This gives rise to a quantity that can be determined by a Monte Carlo
calculation

*Finally, subtract the result for that quantity from the mean field free
energy per unit volume of the bulk system




Writing
(@, y,z,w) = Ay, ©,w)p(z)

We have for the GLW effective Hamiltonian

/da:dydzdw{%fl(y,z w)?2 (%—?) + ;A(y 2, w)2p(x)?

2p(x)2 (8/1(%,; w )2 <aA Y, z,w) <8A Y, 2, W )

Defining

The effective Hamiltonian becomes

1

0A(y, z, w)
Yy ) i

<><>1}




Sequence of profiles for varying film thickness

Lop
0.8 7
0.6}
0.4}

02!




The L-derivative of the effective Hamiltonian is

o = /dydzdw{QA(y,z,w) (rdL + dL)+§d—L

0A(y, z,w) 2 0A(y, z,w) 2 udPs 4
+< 52 ) T ow 1L A s w)

and the Casimir force 1s given by

—(OH/OL) + fB

where f B is the mean field bulk free energy




Casimir force, as a function of unrenormalized reduced temperature, 7,
for a 10x10x10 film
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