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Remarkable, deceptively simple relations obeyed by
fluctuation statistics in out-of-equilibrium systems
Relevant for small systems, where fluctuations are
large
Provide tools for the investigation of equilibrium
properties of small systems
Provide structure to the “thermodynamic” properties
of non-equilibrium steady states
Could be relevant to understand the working of
biological system, like biological motors
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Fluctuation relations for the work:

Jarzynski’s relation and its applications
Crooks’s relation and its consequences
Experiments and applications to biomolecules
On the estimation of the free energy
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Fluctuation relations for the work:

Jarzynski’s relation and its applications
Crooks’s relation and its consequences
Experiments and applications to biomolecules
On the estimation of the free energy

Fluctuation relations for the entropy:

Entropy production in a single trajectory:
Seifert’s relation and its consequences
Entropy production in nonequilibrium steady
states: The Gallavotti-Cohen relation
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Manipulation of a biopolymer by optical tweezers
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A system at equilibrium at inverse temperature β:

Zμ = Tr
x

e−βH(x,μ) = e−βF (μ)

Manipulation protocol:

μ : μ = μ(t); μ(0) = μ0; μ(tf) = μf

Fluctuating work:

W[x,μ] =

∫ tf

0

dt μ̇(t)
∂H

∂μ

∣∣∣∣
x(t),μ(t)
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A system at equilibrium at inverse temperature β:

Zμ = Tr
x

e−βH(x,μ) = e−βF (μ)

Manipulation protocol:

μ : μ = μ(t); μ(0) = μ0; μ(tf) = μf

Fluctuating work:

W[x,μ] =

∫ tf

0

dt μ̇(t)
∂H

∂μ

∣∣∣∣
x(t),μ(t)

〈W〉 ≥ F (μf) − F (μ0)
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What does nonequilibrium tell us of equilibrium?〈
e−βW〉

= e−β(F (μf)−F (μ0))

Average over all realizations of the system history x(t):

〈· · ·〉 = Tr
x
P [x] · · ·
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What does nonequilibrium tell us of equilibrium?〈
e−βW〉

= e−β(F (μf)−F (μ0))

Average over all realizations of the system history x(t):

〈· · ·〉 = Tr
x
P [x] · · ·

Assumptions:

Evolution equation for P (x, t): ∂tP = −Ĥμ(t)P

Equilibrium distribution: ĤμP
eq = 0

P eq(x, μ) =
e−βH(x,μ)

Zμ
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ψ(x, t) =

∫
Dx δ(x(t) − x) e−βW[x] P [x]

Evolution equation:

∂ψ

∂t
= −Ĥμ(t) ψ − βμ̇(t)

∂H

∂μ
ψ

Initial condition:

ψ(x, 0) = e−βH(x,μ(0))/Zμ(0)

Thus
ψ(x, t) =

1

Zμ(0)

e−βH(x,μ(t))
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Sudden change in the hamiltonian: μ0 −→ μ1

〈
e−βW〉

=
∑

x

e−β(H(x,μ1)−H(x,μ0))
e−βH(x,μ0)

Zμ0

=
1

Zμ0

∑
x

e−βH(x,μ1) =
Zμ1

Zμ0
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Sudden change in the hamiltonian: μ0 −→ μ1

〈
e−βW〉

=
∑

x

e−β(H(x,μ1)−H(x,μ0))
e−βH(x,μ0)

Zμ0

=
1

Zμ0

∑
x

e−βH(x,μ1) =
Zμ1

Zμ0

Adiabatic change: μ(t) = �(t/tf),
�(0) = μ0, �(1) = μ1

W[x] �
∫ tf

0

dt′
〈

∂H(x(t′), μ)

∂μ

〉
μ=μ(t′)

μ̇(t′)

=

∫ μ1

μ0

dμ

〈
∂H(x, μ)

∂μ

〉
μ

= W th
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ΔF = F (μf) − F (μ0) is the change in the equilibrium
free energy with the corresponding values of the
parameter μ
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ΔF = F (μf) − F (μ0) is the change in the equilibrium
free energy with the corresponding values of the
parameter μ
One assumes that the system is initially at
equilibrium
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ΔF = F (μf) − F (μ0) is the change in the equilibrium
free energy with the corresponding values of the
parameter μ
One assumes that the system is initially at
equilibrium
The system is not at equilibrium at the end of the
process
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ΔF = F (μf) − F (μ0) is the change in the equilibrium
free energy with the corresponding values of the
parameter μ
One assumes that the system is initially at
equilibrium
The system is not at equilibrium at the end of the
process
The average is over all realizations of the process: If
the process is deterministic, over the initial
conditions
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x ∈ {1, 2, . . . , q} t ∈ {0, 1, 2, . . .}
Equilibrium distribution determined by hamiltonian
H(x, μ):

P eq(x, μ) =
e−βH(x,μ)

Zμ

Zμ =
∑

x

e−βH(x,μ) = e−βF (μ)

Evolution equation for the probabilities:

p(x, t + 1) =
∑
x′

Wxx′(μ(t)) p(x′, t)

∑
x′

Wxx′(μ) P eq(x′, μ) = P eq(x, μ)
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E(μ) = 〈H(μ)〉μ 〈A〉μ =
∑

x

A(x) P eq(x, μ)

Manipulation: μ −→ μ + dμ:

dE(μ) =
∑

x

dH(x, μ) P eq(x, μ(t))︸ ︷︷ ︸
dW

+
∑

x

H(x, μ) dP eq(x, μ)︸ ︷︷ ︸
dQ

dSeq = −kB d

(∑
x

P eq(x, μ) ln P eq(x, μ)

)
= −kB

∑
x

lnP eq(x, μ) dP eq(x, μ)

=
1

T

∑
x

H(x, μ) dP eq(x, μ)
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Path x = (x(0), x(1), x(2), . . . , x(tf))
Manipulation protocol: μ = (μ(0), μ(1), . . . , μ(tf − 1))

W[x] =

tf−1∑
t=0

[H(x(t + 1), μ(t + 1)) − H(x(t + 1), μ(t))]

Q[x] =

tf−1∑
t=0

[H(x(t + 1), μ(t)) − H(x(t), μ(t))]

ΔE = H(x(tf), μ(tf)) − H(x(0), μ(0)) = W + Q

N.B.W and Q depend on the whole path, ΔE depends
only on initial and final states
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4
t

H

10 2 3

P [x | x(0)] = Wx(tf ),x(tf−1)(μ(tf − 1)) × · · ·
· · · × Wx(2),x(1)(1)Wx(1),x(0)(μ(0))

N.B.: The transitions take place with the “old” probability
Wxx′(μ(t − 1)), then the energy changes to H(x, μ(t))
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Time-reversal invariant states: Ix = x

x = (x(0), x(1), . . . , x(tf − 1), x(tf))

x̂ = (x(tf), x(tf − 1), . . . , x(1), x(0))

x̂(t) = x(tf − t) = x(t̂)

Time-reversed protocol:

μ̂ : μ̂(t) = μ(tf − t) = μ(t̂) t = 1, . . . , tf

Probability of the reversed transition:

Ŵxx′(μ) : Ŵxx′(μ)P eq(x′, μ) = Wx′x(μ)P eq(x, μ)
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Time-reversal invariant states: Ix = x

x = (x(0), x(1), . . . , x(tf − 1), x(tf))

x̂ = (x(tf), x(tf − 1), . . . , x(1), x(0))

x̂(t) = x(tf − t) = x(t̂)

Time-reversed protocol:

μ̂ : μ̂(t) = μ(tf − t) = μ(t̂) t = 1, . . . , tf

Probability of the reversed transition:

Ŵxx′(μ) : Ŵxx′(μ)P eq(x′, μ) = Wx′x(μ)P eq(x, μ)

(Detailed balance: Ŵxx′(μ) = Wxx′(μ))
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Wxx′(μ(t)) = Wxx′(t) etc.

Ŵxx′(t) = Wx′x(tf − t) t = 1, . . . tf

P̂ [x̂ | x̂(0)] = Ŵ
bx(tf ),bx(tf−1)(tf) · · · Ŵbx(2),bx(1)(2)Ŵ

bx(1),bx(0)(1)

= Wx(1),x(0)(0)eβ(H(x(1),μ(0))−H(x(0),μ(0)))

× Wx(2),x(1)(1)eβ(H(x(2),μ(1))−H(x(1),μ(1))) × · · ·
× Wx(tf ),x(tf−1)(tf − 1)

× eβ(H(x(tf),μ(tf−1))−H(x(tf−1),μ(tf−1)))

= P [x | x(0)] eβQ[x]
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P [x] = P [x | x(0)]P eq(x(0), μ(0))

P̂ [x̂] = P̂ [x̂ | x̂(0)] e−βH(bx(0),bμ(0))
/
Z

bμ(0)

= P [x | x(0)] eβ{Q[x]−H(x(tf ),μ(tf))}/Zμ(tf)

= P [x] eβ{Q[x]−(H(x(tf ),μ(tf))−H(x(0),μ(0)))} (
Zμ(0)

/
Zμ(tf)

)
Q[x] − ΔH = −W[x] Zμ(0)

/
Zμ(tf) = eβ ΔF

P̂ [x̂] = P [x] e−β(W[x]−ΔF )

Summing over x:

1 =
〈
e−β(W−ΔF )

〉
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eβ(W[x]−ΔF ) =
P [x]

P̂ [x̂]

Thus

W d = 〈W〉 − ΔF = β−1
∑

x

P [x] ln
P [x]

P̂ [x̂]︸ ︷︷ ︸
D(P[x]‖ bP[bx])

van den Broeck et al., 2007

Summing over x with a given value of W :

W d = β−1

∫
dW P (W ) ln

P (W )

P̂ (−W )
= β−1D(P (W )‖P̂ (−W ))
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Nonlinear oscillator: H(x, μ) = H0(x) − μx, μ̂ = −μ
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Nonlinear oscillator: H(x, μ) = H0(x) − μx, μ̂ = −μ

 0

 0.2
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W

Dotted line: P (W ) e−βW = P (−W )
The value of W that contributes most to Jarzynski’s
equality is the most probable in the inverse manipulation
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Nonlinear oscillator: H(x, μ) = H0(x) − μx, μ̂ = −μ

 0

 1

 2

 3
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 5

-1.5 -1 -0.5  0  0.5  1  1.5

W

For larger systems, fluctuations which contribute to
Jarzynski’s equality are exceedingly rare
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Collin et al., 2005
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Collin et al., 2005

P̂ (−ΔF ) = P (ΔF )
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89 aminoacids, ε/kB = 43 K
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A. Imparato, S. Luccioli, A. Torcini, 2007
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Detailed balance:

Wxx′ e−βH(x′) = Wx′x e−βH(x)

⇓
Wxx′

Wx′x
= e−β(H(x)−H(x′)) = e−βQxx′ = eΔSbath

xx′ /kB

Generalize by definition: (units kB = 1)

ΔSbath
xx′ = ln

Wxx′

Ŵx′x

P̂ [x̂ | x̂(0)]

P [x | x(0)]
=

tf−1∏
t=0

Ŵx(t)x(t+1)

Wx(t+1)x(t)

= e−ΔSbath[x]
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Define π0(x) and π̂0(x) arbitrary but normalized,
P [x] = P [x | x(0)]π0(x(0)) etc.:

ln
P̂ [x̂]

P [x]
= −ΔSbath[x] + ln

π̂0(x̂(0))

π0(x(0))

Seifert 2005
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Let p(x, t) be the solution of

p(x, t + 1) =
∑
x′

Wxx′(t)p(x′, t) p(x, 0) = p0(x)

π0(x) = p0(x) π̂0(x) = p(x, tf)

Define S(x, t) = − ln p(x, t), then

ln
π̂0(x̂(0))

π0(x(0))
= ln

p(x(tf), tf)

p(x(0), 0)
= −ΔS

ΔStot = ΔSbath + ΔS

P̂ [x̂] = P [x]e−ΔStot[x] ⇒
〈
e−ΔStot

〉
= 1
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Entropy becomes a fluctuating quantity, related to a single
trajectory rather than to an ensemble
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Entropy becomes a fluctuating quantity, related to a single
trajectory rather than to an ensemble
There is a nonzero probability for ΔStot < 0 !
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Entropy becomes a fluctuating quantity, related to a single
trajectory rather than to an ensemble
There is a nonzero probability for ΔStot < 0 !
Jensen’s inequality:

〈
eX

〉 ≥ e〈X〉:〈
ΔStot

〉 ≥ − ln
〈
e−ΔStot

〉
= 0
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Jensen’s inequality:
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ΔS < 0 can be interpreted as a “transient violation” of the
2nd principle
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Entropy becomes a fluctuating quantity, related to a single
trajectory rather than to an ensemble
There is a nonzero probability for ΔStot < 0 !
Jensen’s inequality:

〈
eX

〉 ≥ e〈X〉:〈
ΔStot

〉 ≥ − ln
〈
e−ΔStot

〉
= 0

ΔS < 0 can be interpreted as a “transient violation” of the
2nd principle
Transient violations are related to Loschmidt’s reversibility
paradox
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Let π0(x) = P eq(x, μ0), π̂0(x) = P eq(x, μ1), β = 1/kBT :

ln
π̂0(x̂(0))

π0(x(0))
= eR = eβΔF−β(H(x(tf),μ1)−H(x(0),μ0))

ΔS = −βQ
R = β [Q + ΔF − ΔH(x, μ)]

= −β (W[x] − ΔF )

P̂ [x̂] = P [x] eR ⇒ 〈
e−βW〉

= e−β ΔF
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Ŵx′x = Wx′x

Detailed balance is violated:

WxyWyzWzx �= WzyWyxWxz ∃x, y, z

Thus � ∃H(x) : Wx′x/Wxx′ = e−β(H(x′)−H(x))

Steady state distribution:∑
x′

Wxx′pss(x′) = pss(x)
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Choose π0(x) = π̂0(x) = pss(x)

ln
P̂ [x̂]

P [x]
= −ΔSbath[x] − ΔSss

Total entropy production:

ΔStot = ΔSbath[x] + ΔSss

Summing over all paths x with a given value of ΔS tot

yields the fluctuation theorem:

p(−ΔStot)

p(ΔStot)
= e−ΔStot
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The fluctuation theorem holds for finite times, but
starting from the steady state
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The fluctuation theorem holds for finite times, but
starting from the steady state
Since ΔS is bounded, but ΔSbath grows, we have for
large tf

ΔStot � ΔSbath
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The fluctuation theorem holds for finite times, but
starting from the steady state
Since ΔS is bounded, but ΔSbath grows, we have for
large tf

ΔStot � ΔSbath

Large-deviation function φ(s):

p(ΔStot) ∝ e−tfφ(ΔStot/tf)
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The fluctuation theorem holds for finite times, but
starting from the steady state
Since ΔS is bounded, but ΔSbath grows, we have for
large tf

ΔStot � ΔSbath

Large-deviation function φ(s):

p(ΔStot) ∝ e−tfφ(ΔStot/tf)

Gallavotti-Cohen relation:

φ(−s) = φ(s) + s
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Stationary system:

ΔSx′x = ln
Wx′x

Wxx′

= ln
Wx′xp

ss(x)

Wxx′pss(x′)︸ ︷︷ ︸
ΔShk

− ln
pss(x)

pss(x′)︸ ︷︷ ︸
ΔSex

N.B.: If detailed balance is satisfied:

Wxx′pss(x′) = Wx′xp
ss(x)

then
−ΔShk

x′x = 0 ∀x, x′



Average housekeeping heat

Introduction

Fluctuation relations
for the work

Applications

Fluctuation relations
for the entropy
production

Entropy produced
in a transition

Seifert’s relation
Fluctuation

theorem I (Seifert)

Comments
Fluctuation

theorem II
(Jarzynski)

Steady states out
of equilibrium

Fluctuation
theorem III
(Evans-Searles)

Comments
Housekeeping

entropy production
(heat)

Average
housekeeping heat

Fluctuation
theorem for the
housekeeping heat

Luca Peliti KITP – Santa Barbara, September 11, 2008 – 32 / 36

ϕx′x = Probss(x −→ x′) = Wx′xp
ss(x)

ϕx′x ≥ 0
∑
x′x

ϕx′x = 1

ϕ̂x′x = ϕxx′
∑
x′x

ϕ̂x′x =
∑
xx′

ϕxx′ = 1

〈
ΔShk

〉ss
=

∑
xx′

ln
Wx′xp

ss(x)

Wxx′pss(x′)
Wx′xp

ss(x)

=
∑
xx′

ln
ϕx′x

ϕxx′
ϕx′x = D(ϕ̂‖ϕ) ≥ 0
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Since
ΔShk

x′x = ln
ϕx′x

ϕxx′

we have 〈
e−ΔShk

〉
=

∑
xx′

ϕxx′

ϕx′x
ϕx′x

=
∑
xx′

ϕxx′ = 1

Speck and Seifert, 2005
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Fluctuation relations for the entropy are more
general than the corresponding ones for the work
They provide hope for a characterization of non
equilibrium steady states
The field is still unsettled
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