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Introduction: Classical charged systems

Field-theoretical formalism: weak--strong coupling paradigm
Uniformly charged planar surfaces: fluctuations & correlations
Disorder in the surface charge distribution

Asymmetrically charged surface (planar)
Dielectric discontinuity effects
Disorder-induced fluctuation forces vs van-der-Waals



Charged Soft Matter:

Charged colloids Charged polymers Charged membraneg
(Polyelectrolytes)

et

co-ions

- structural properties and phase behavior (aggregation,
crystallization, ....), equation of state, electrokinetics, etc.

. =

Effective interaction between charged objects (‘macroions’)

. =

charge fluctuations in bulk and on the boundaries




Stability of charged systems

solvent (or vacuum)

‘ Stable?
\. .

counterions make the system
globally electroneutral

DLVO theory (Derjaguin, Landau, Verwey and Overbeek)

Earnshaw, S., On the nature of the molecular forces which regulate the constitution of the luminferous ether,
Trans. Camb. Phil. Soc., 7, pp 97-112 (1842)




1948 - annus mirabilis for colloid science

Gouy (1910)

THEORY OF THE STABILITY
OF LYOPHOBIC COLLOIDS

THE INTERACTION OF SOL PARTICLES
HAVING AN ELECTRIC DOUBLE LAYER

Chapman (1913)

Debye & Huckel (1913)

BY

E. J. W. VERWEY anp J. TH. G. OVERBEEK Verwey & Overbeek

Natuurkundig Laboratorium N.V. Philips' Gloeilampenfabrieken,
Eindhoven (Netherlands) (1 948)

Hence we now have an expression for the charge density
With the collaboration of Which may be inserted into eq. (1), when we obtain the funda-

tal differential equation: . .
K VAN Ngs  mental differ I o Derjaguin & Landau
Tnve

AY = = e sinh (ved/kT) (3) (1941)

For small values of ¢ this equation simplifies to dISJOInIng pressure
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of the electric potential in the jonic atmosphare around an ion).
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Electrostatics plus van der Waals.



DLVO theory of colloid stability:

Electrostatics plus van der Waals.

Repulsive force

V,(d)me™

I:i ) Attractive

d = interparticle distance

Vr(d)=V,(d)+Vg(d)

interparticle distance

Primary minimum
"irreversible"” floculation

Secondary minimum
"weak" floculation




The Poisson - Boltzmann equation - collective description
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1984 - annus horribilis for colloid science

Developments in the 80’s colloid science:

e (Qosawa derives attractive interactions
between DNAs (late 60’s early ‘70)

e Simulation of DLVO interactions (early 80’s
- electric double-layer simulation Torrie and

(p/RT)/mol dm™

01 02 03
Valleau) o/Asm
> Fundamental paper by GUlbrand, JOI’]SSOI’], Fig. 4. The pressure in the counterion-only system at the intersurfacle sepfll—;atigrBl 2a =2._1 nm as
I a function of the surface charge density. The counterions are monovalent. The PB approximation
WennerStrom and Llnse ( 1 9 84) (- - ) and the simulation results* (@) are also presented for comparison.

Established that for planar surfaces the
Interactions with divalent counterions can
be attractive!
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They dubbed it the correlation effect because it
stems from a correlation term in the stress

tenSO r' Fig. 5. As fig. 4 except that here the counterions are divalent.

Probably the biggest advance in colloid science since DLVO.



Getting worse and worse...

A pair of DNAs with polyvalent counterions:
(Gronbech-Jensen et al. 1997)

Repulsion

Attraction
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Hexagonal array of DNA with poly-counterions:
(Lyubartsev and Nordenskiold, 1995)
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Figure 7. Osmotic pressure in the ordered DNA system with +2 y ,‘6..? —"fr;';
counterions. Lines: one DNA in the cell and ion diameter 0 = 0 (1), X f‘ Wy
0=1AQ2),0=4A(3),0=5A(4),0=6A(5). Points: seven 4
DNA'’s in the cell and 0 = 4 A. s
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Attractions seem to be everywhere! | gLt



* Colloids (spheres):

counterion valency

* Microtubules (cylinders):

Fig.2. Micron and nanometer scale images of the hexagonal bundle phase
of microtubules. (A) DIC optical micrographs of hexagonal MT bundles with
3+ (20 mM spermidine), 4+ (5mM spermine), and 5+ (2.5 mM oligolysine-five)
counterions. (B) Plasticcembedded TEM cross section (Upper) and whole-
mount TEM side view of hexagonal MT bundles (10 mM spermine) (Lower). A
3D schematic is shown in Fig. 1 Left.

D. Needleman-C. Safinya et al. (2004)

Per Linse et al. (1999)

Fig.3. Micron and nanometer scale images of the necklace bundle phase of
microtubules. (A) DIC (Right), whole-mount TEM side view (Upper Left), and
plastic-embedded TEM side view (Lower Left) of MT necklace bundleswith 100
mM Badl,. (B-D) Plastic-embedded TEM crosssections of bundleswith 100 mM
Badl; showing linear (B), branched (C), and loop-like (D) morphologies. A 3D
schematic is shown in Fig. 1 Right.




Hexagonal Living Necklace Bundle
Bundle

3+, 4+, 5+ .

L.ar 8% 25 num
Linear
Cation

Fig. 1. 3D schematics of higher-order assembly of nanometer-scale MTs. Large trivalent, tetravalent, and pentavalent cations lead to the formation of
hexagonal bundles (Left). Small divalent cations lead to the living necklace bundles with linear, branched, and loop morphologies (Right). The distinct bundle
phases allow for tailored applications in miniaturized materials requiring high volume (hexagonal bundles) or high surface area (necklace bundles).




( spontaneous compactification of DNA )

"normal" DNA:
a swollen,
disordered coil

(Kleinschmidt et al., 1962)

DNA condensates

Sikorav Lagiibet




charged surfactants in water form different ordered phases

O,

water-loving head (charged)

water-hating tail

counterion Nat
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lamellar phase

increasing the counterion valency induces attraction between lamellae
(similar effects seen for spheres, cylinder ...)




A historical guide to the correlation effect

Oosawa (1971)

(counterion fluctuations)
Gulbrand, Jonsson, Wennerstrom and Linse
(1984)

Ninham and Parsergian (75)
(van der Waals interactions)

Lyubartsev and Nordenskiold (1995) Rouzina and Bloomfield (1996)
Gronbech-Jensen et al. (1997) (checkerboard model)
(earlier MC simulations)

Podgornik et al. (1988-1991)

PAttard Setfal. ((11998985?) Kjellander and Marcelja
incus, Safran (1 (1984-19806) Shklovskii et al. (1999-2002)
Podgornik and Parsegian (1999) (inhomogeneous integral Lau and Pincus (2001)

Kardar, Golestanian (1999)

equations closure) Levin et al (2000)
: : Wigner crystal model)
(Gaussian fluctuations) (
S~ /
\/
Netz et al (2000-...)
(General analysis of Coulomb fluids + simulations)

Weeks et al (2006)
Santangelo (2006)
AN, RP et al
(various extensions)
High-T approach Low-T approach




Weak--Strong coupling paradigm
(planar charged surfaces)



Weak and strong coupling electrostatic interactions

€1 €9

.

V (1‘1 , I'o ) —

Bjerrum length Admeeg|ry — ro

Gouy - Chapman length

5 Coulomb’s law
eq/dmeegkT . and
' kT

Ratio between the Bjerrum and the Gouy - Chapman lengths. Bulk versus surface interactions.

Coupling parameter

Weak coupling limit
(Poisson - Boltzmann)
E—0

Strong coupling limit
(Netz - Moreira)
= — 0

Charged object
charged membranes

1 (Na')
2 (Mn?t)
3 (spermidine)
4 (spermine)
highly charged colloids :
(Surfactant micelles)
arged colloids
(polystyrene particles)

Table 2.1: Typical values of physical parameters for realistic charg 5<=d systems: og and R denote

the surface charge d

counterions, u = 1/(2m is the Gou nan length, = = ¢° /B/;z is the (ouphng ’
and R = R/ is the Manning parameter (Section 2.3). The Bjerrum length is taken here as /g ~ 7. 1A
corresponding to an aqueous medium of dielectric constant € = 80 at room temperature.




Weak coupling limit Coupling parameter Strong coupling limit

(Poisson - Boltzmann) (Netz - Moreira)
= — o0

Collective description
(Poisson - Boltzmann “N” description
Screened Debye-Hueckel)

VS.
Single particle description
(Strong Coupling “1” description)

How was that accomplished?




Field-Theoretical Approach Coulomb fluids

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3. NUMBER 4 JULY-AUGUST 1962

Exact Statistical Mechanics of a One-Dimensional System with Coulomb Forces.
II. The Method of Functional Integration

Epwarps
Department of Theoretical Phy Tniversity, Manchester, England

Plasma Physics Labora n U ceton, New Jersey

Coulomb fluid = an ensemble of interacting Coulomb charges.

Functional integral representation of the Coulomb fluid grand canonical partition function.

Zy = ??('X}){—II.O]}

H[¢| =

1 P ’ \\-') (4 PR PR PR bl vl ()
/(lr [ - ) ||VCJ-'\[‘)' "l“ — _Ol.r"'o“.r} — A.(zlr}l(}ll | L
. 8:[};(1‘ q

Exactly solvable for 1D Coulomb gas. “Schroedinger

equation” (Dean, Horgan et al)
In 3D, only asymptotic cases can handled analytically



Dimensionless representation

[ 5 { -SE)

. 1(V>~<so(:?i)>2 —i5(x)p(X) — AQ(X) e ¥

* for =—>0: loop expansion in powers of = (e.g. for interaction)

P(A) = Ppg(4) + ZPLL(A) + OE?)

* for E—>00: expansion in powers of Z-1 (virial expansion)

| .
P(4) = Psc(4) + = PS(4) + 0(Z72)




I

PB equation and saddle point =—0

J. Chem. Soc., Faraday Trans, 2, 1988, B4(6), 611-631

Inhomogeneous Coulomb Fluid
A Functional Integral Approach

S —-%ﬂéé‘o j (Vo(r)]%d’r

Rudi Podgornik*
J. Stefan Institute, Jamova 39, p.p. 100, 61111 Ljubljana, Yugoslavia

Boitjan Zeks
Institute of Biophysics, Lipiceva 2, Medical Faculty, University of Ljubljana,

61000 Ljubliana, Yugoslavia FU nCtiona| | nteg ra

+ fp[@(r) Jd’r—p fgf[qJ(s) |d s

action”.

Functional integral representation of the grand canonical partition function
paves the way to a derivation of the PB equation plus the fluctuational corrections to it!

[ ) ] =0. = the Poisson - Boltzmann equation
Sg(r) lo

Saddle point = mean-field (MF) €€,V () + NZepQU(r)e P20dr®) = _ p (r) .

s=s+3 [ 5o ]
D) Sp(r)de(r) Jo = Poisson - Boltzmann equation plus second order
fluctuational (Gaussian) corrections.
Hessian of the Coulomb action.

X 8p(r)dp(r')d’rd?',

Second order fluctuational (Gaussian) corrections = zero frequency Lifshitz-van der Waals term
or the classical Casimir effect



Strong-coupling theory =—

On the SC level the image corrections exist for the external potential
as well as for the image self-energy!

(a lot easier to evaluate)



Interaction between identical planar charged surfaces
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Total pressure (PB+ flucts)
P(A) = Ppg(A) +EPSY(A) + O(2?),

Poisson - Boltzmann (analytic)

pPp(4) _ (@)”
2nlya? A

Fluctuational (analytic)

net attraction not possible!!

BPL p\[C@) | 7,
~ — - —_— I . l A [\ .
onlpo? A) |7 Tt /)

equilibrium distance

S * TA

mosaic binding

A, =2u.




Regimes of validity of asymptotic theories

loop s
expans.
valid
&
4
\"0\0_0 & —

repulsion

virial expansion valid

attraction

WC regime:

(/) =

Alu 10 100 10° 1% 10’

Wigner
crystalliz.

SC I'egime: strong-coupling

regime
A<a L
mean-field

A 2 regime
— | <Z
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Beyond the ‘standard model’

Generalization to more realistic and refined models
if compared to the “primitive model”.



Geometry of ‘macroions’

SR

picture: Barbosa (2005)

Additional salt (co + counterions)
Discreteness of surface charges
Discontinuous dielectric constant (vdw vs. charge fluctuations)
Asymmetrically charged surfaces

Disordered charge distributions




Electrostatic image effects

What happens when there are dielectric inhomogeneities in the system?

A model system composed of
couterions with dielectric discontinuity
at the boundary.

The dielectric discontinuity is
quantified by:

1 .
. e Qlz—2 |
255[)(2 |
1 chQ(z+2)+Ae @ chQ(z—2)
5_;_‘062 AUIC")Q'] — AC»QQO )



Electrostatic image effects on the WC level

The mean-field (PB) solution depends only on the transverse coordinate.
By definition then, the image effects are non-existant on the PB level!

55 Saddle point = mean-field (MF)
5 ] =0. With homogeneous charge distribution depends
@(r) Jo only on z-coordinate

They do however exist in the 2nd order correction to the mean-field.

S=35,+ lff [__52§__] = Poisson - Boltzmann equation plus second order
2 o@(r)de(r') Jo fluctuational (Gaussian) corrections.
X 5p(r)8e(r')d’r d’r' | Hessian of the Coulomb action.

Small separation limit:

s s L1 LAY
e A N VY

Large separation limit:

T2 = . 2a° 1+ A
~= 7 ——~: ~J i P 2!2(]1 p *2 ¢ 't‘ 1 QA_
P=PomP2 ™ 4527 39 aﬁ[ T 2 [ oA vt

—(1+ A)ln(1 + A)) + <(3)] . (24)



Electrostatic image effects on the SC level

On the SC level the image corrections exist for the external potential
as well as for the image self-energy!

Zero order SC: Coulomb interaction between charged surfaecs

70— 3B u(r o (R0 ()
G - - .

...adn the first order (SC proper) correction:

Zg = Z0(1+ \U)

I — /exp ( —;Beﬁq:eusm(Rs R) - ,Beoq/‘u(r, R)Pt](r)dﬁr) PR

Small separation limit: Large separation limit:

1+ A\

—
p—

pla,A>0) ~— (7) — —In(1-A)+ ; + Ofa).

1A

2a* a




Theory vs. simulations

Compare SC analytical results with simulations at large electrostatic coupling!

The range of validity of the SC theory is extended and remains valid
for larger values of the intersurface separation then in the case of no images.

Yong-Seok Jho (MRL) produced an extended set of simulations and thoroughly explored
the parameter space for this problem. The approximate SC theory fares extremely well
in the regime where it is supposed to work!



Theory vs. simulations
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FIG. 2: a) Rescaled counterion density profile between two like-charged dielectric membranes for = = 100, b/u = 100, a/p = 1
and as the dielectric mismatch A is increased (from bottom to top at z = 0). b) Rescaled inter-membrane pressure as a function
of A for b/p = 100, a/p = 1 and as = is increased (bottom to top); inset shows the details in the logarithmic scale. ¢) The
mid-plane (z = 0) counterion density, p{0), as a function of the coupling parameter = for a/u = 7, b/p = 100 and as A is

increased
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FIG. 3: a) Same as Fig. 2b but for a/u = 7. Inset shows the details for small pressures. b) Simulated equilibrium half-distance,
a,, as a function of = for b/u = 2 and as A is increased. Lines are SC predictions (from minimization of Eq. (3)). ¢) Simulation
results with all images (circles) and the first-order images only (squares) showing a. as a function of b for = = 50 and A = 0.95;
here lines are guides to the eye. The surfaces attract for a > a. and repel for a < a..




Electrostatic interactions in asymmetric systems

Parsegian and Gingell formulated a linearized PB theory of the interactions in the presence of salt.
The linearization ansatz was later generalized in the work of Lau and Pincus and Ben-Yaakov et al.

V.A. Parsegian and D. Gingell, Biophys. J. 12, 1193 (1972).
A.W.C. Lau and P. Pincus, Eur. Phys. J. B 10, 175 (1999).
D. Ben-Yaakov, Y. Burak, D. Andelman and S.A. Safran, Europhys. Lett. 79, 48002 (2007).

o, +0,<0, and o, >0o,, sothat o, <0.

Electroneutrality:

The mean field pressure can be calculated in full
and depends on the value of zeta, giving attractions as

well as repulsions.

d_)l:l i 2 wn(2)
#2() = (-’17T£15Q')A”C,' l_‘.|_A_,'IE

with boundary conditions
SC attraction
dz;'” N WC repulsion
dz

—a

dz

a




Fluctuations around mean-field
in an asymmetric system (the classical Casimir effect)

One needs to calculate the tracelog of the Hessian of the Coulomb action:

The tracelog of the Hessian equals the trace
of the log of the secular determinant

BF; = %'l'rlnH(r,r’) = i _ anDI(Q)

am Jo Du(Q) Q-

((;:2 Q2 /\(“lﬁfuqz)n”(Z))f,\(Q, z) = (.

Different results in
different limits:

for 1/¢>> D >> 1 (repulsive MF)

for D >> 1 (attractive MF)

For negative C. Range of validity



Theory vs. simulations (WC)

Compare WC + 2nd order fluctuations analytical results with extensive simulations (Martin Trulsson).
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Quantitative comparison for pressure only if classical Casimir taken into account!



Strong coupling in an asymmetric system

Mean-field no longer valid. SC limit again analytical.

Exact form for pressure: for D <<1

(<) coth ({1 —()—|.
() CO l[. 8 2]

for D >> 1

sinh [(1 - ¢)D/2]

The validity of the SC approximation is limited
_ to small enough separations. The following
o ;\/CC (2nd, = =1) criterion holds:

SC attraction

\
. WC repulsion

Remember: SC is the virial expansion to the
first order in the absolute activity or
equivalently in the inverse coupling constant.



Theory vs. simulations (SC)

Compare SC analytical results with extensive simulations (Martin Trulsson).
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Quantitative comparison for WC as well as SC in their respective ranges of validity!



Patching together disorder & coulomb interactions

Disorder is seen or inferred (lecture of Andy Kim!) experimentally.

SE) A
I Perkin et al. (2005)

€1 €
1 ™2 Surface charge disorder -

dmeeg|ry — ro|’ ' patchy surfaces.

/(r1,12) =

. : _ | 8 Probably ubiquiteous in many
) ‘ . contexts and important when
®/ - g ™ ~ small interactions are measured..

B &’

“Mean” coupling parameter

HrrZ’/" \

Weak coupling limit _ _ Strong coupling limit
(Poisson - Boltzmann) Disorder coupling parameter (Netz - Moreira)
-——0 - o

Z: )ﬂ % a0
Beo)’s _ vz o ?

? =
X Rarleey)”

Consider only surface charge disorder: glr)=g(z.p)=gdz—-a)+gdlz+a).



Quenched vs. annealed disorder

Quenched disorder:
surfactant-coated surfaces (?)

Annealed disorder:
fluid membranes (mobile
charges and surface fluctuations)
charge requlating surfaces
(dissociation/association of weak acids)
DNA microarrays
polyampholytes

spectri Ny

Partially annealed disorder: nonequilibrium



Quenched surface charge disorder & coulomb interactions

Generalize the model system from homogeneously charged interfaces to
interfaces with disordered charge distribution.

Gaussian ansatz for the
charge disorder

~(1/2)fdr g7 (r)[p(r) - po(r) P

const X e

The free energy:

-~

-
— L

F=—kgTlog Z2=-kgTlim .

n—0

Replica formalism but also alternatives:

()= | Dlp(x)](---)e e 7 (F)olr) = po]*,

Does the quenched charge distribution have any effect on intersurface interactions?
Henri Orland (private communication,1999): not in the PB limit!



Strong coupling disorder effects

glr)=glz.p)=gdz-a)+ 28z +a).

In this limit one can obtain very simple analytical results. Two charged surfaces with
non-zero average and non-zero mean square average.

D+ (x-1)InD-I(y) Z*(Beo)’e

= > =277 e.
/Y 877{,660,)_ ng

+(x—=DInD-1I(x).

Disorder coupling parameter.

Disappeearance of the
entropic minimum
for large enough disorder.

Attraction even if the surfaces
carry very small NET charge!!l




Disorder effects with dielectric inhomogeneities

Standard FT representation of the partition function.

F=—kgT mZ =5 Tr g(r)G(r.r') + 2L Trin g™’

Standard vdw term  Standard mean-field term

Disorder induced term
(fluctuational in origin)



F=—-kpT'InZ =

1 Standard vdw term Standard mean-field term

Disorder induced term
(fluctuational in origin)




Weak coupling disorder effects with images

Disorder effect are clearly there and can be repulsive as well as attractive, for O < ka < 1
and the ratios em/ep = 0.2, 0.4, 0.6, 0.8, 1.0, 5.0 and 10.0 (from top to bottom).

2 y 2 2
Small separation: AV Al 1+ G €nlem — &)k ol e
S em€pkia Amo?(€m + €p)° €+ €

Disorder does NOT renormalize charge. It gives a non-zero interactions even for electroneutral surfaces.

: F G e 4ra kT K2
Large separation: - = —
S  weye, 4a 167 (ka)

Disorder renormalizes zero frequency van der Waals.



Fascinating world of Coulomb fluids:

: €1 €
"-‘"r<1'1.,1‘2) = L2

"1'71'66()’1‘1 — I‘Q‘ "

Coulomb says:

Opposites attract and equals repel!
In line with the common wisdom.

Weak coupling Strong coupling
electrostatics says: electrostatics says:
Opposites attract and equals Opposites repel and equals attract but
repel but not quite so much! only if everybody is very charged!

Quenched disorder
electrostatics says:

Neutrals can attract
but only if everybody in between is very charged!

Of course, only if free mobile charges are present in solution.



