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Main issue dicussed in this talk:
Role of thermal fluctuations In the
electromagnetic Casimir effect



We briefly recall:

Standard calculation of the Casimir force at T=0

Internal radiation pressure
Pressure from infinite half space
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In standard calculation of the Casimir force, the plates are treated as
macroscopic conductors (vanishing of the tangential electric field).

Force on plate atd :

Boundary conditions leads to a d-dependence of the electromagnetic
spectrum, which is the source of the Casimir force.

Field and charge fluctuations inside the conductors are
ignored: dead conductors
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Casimir’s result: 1 4d) =




Part of the force due to thermal fluctuations Fierz, 1960 ; Mehra, 1967
A new length: the thermal wave length of the photon :  Shc
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The free energy of a photon :
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The total force is

f(d) = pr(d) — pi(co) + f*(d)

Short distance or low temperature limit ¢ — OO

P (d) = % e+ 0 (e72)]

the pressure of a very thin black body is exponentially small

Low temperature-short distance
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Casimir force black body pressure
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Long distance or high temperature limit & — 0
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Black body radiation /
pressure

Exponentially small
Classical term independent Casimir term with corrections
of Plank’s constant opposite sign

High temperature-long distance

C(3 b
f(d) = —(\3()[3 + O (exp <_E>> : a— 0

The part due to vacuum fluctuation is cancelled.
Thermal fluctuations dominate. The asymptotic
force is classical (no dependance of h and c)



Lifshitz theory of the force between dielectric bodies (1956) :
characterizes the physical properties of the dielectrics by their frequency dependent
dielectric functions
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® The actual fields are realisations of a stochastic process generated by a
random polarization

K (x.) Random polarization due to
P(x,w) = P(x,w) + == < quantum and thermal fluctuations

and obey stochastic Maxwell equations. of matter and fields

® The random polarization obeys the fluctuation-dissipation theorem.

In the high temperature limit T — « and
the perfect conductor limit € — oo Lifshitz finds
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Schwinger, De Raad and Milton, Ann. Phys., 1978

« Lifshitz found a temperature dependence which
disagrees with that found in other calculations.
We show that the error arises only in the limit
taken to recover the conductor case »



To make the Lifshitz formula effective one needs a model of
the frequency dependent dielectric function e(w)

Drude model: €(w) ~ 4720 Plasmamodel :  €(w) ~ 1-— z—é
O >1
f(d) ~ —;::Zi +0(T%), rtH(0,k) =1 plasma
f(d) ~ —iﬂ‘z‘; + ﬂ:j:;T L O(T*), rTE(0, k) = 0 Drude
O <<1
F(d) ~ Ciﬁf, rTE(0, k) = 1 plasma
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Decide about the 1/2 factor from first principle without
Using the Lifshitz theory — fully microscopic theory

Two principles
® Quantum electrodynamics of non relativistic charged particles
®© Equilibrium statistical mechanics

The model:

A

living conductors

A

-Slabs containing
guantum mobile charges,
e.g.jellium, electrolyte...
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Quantum e.m
photon field




Hamiltonian of non relativistic charges coupled to the electromagnetic field
through Maxwell equations in transverse gauge
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Free field energy in terms of photon creation and annihilation operators:
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Vector potential in transverse gauge DivA=0 :

4frﬁc2) 1/2

. g(k) kA (1 e—ikT | g giker
R kA

>\2“’k

Ultraviolet cut-off
g(k) =0 k> kew = me/k

A(r) = (



The total free energy is Partition function of

3H the free photon field
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The force between the slabs per unit surface
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Problem: find the asymptotic behaviour of the force for large separation d

Hierarchy of lengths:
T . thermal wave length thermal wave length A = Bhe
Amat = Ry Bjm of the particles \‘ /Of the photons P
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Result exact: involves no approximations or intermediate assumptions

9 | :
_Si('3()13 + R(B, h,d) R(ﬁv h, d) — O(d_4)
Tod
| \ Universal classical Casimir amplitude

The asymptotic force is:
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® independent of hand c

® the factor is 1/8 and not 1/4, supporting
that TE modes do not contribute in this regime

® universal with respect to the microscopic constitution
of the plates

® does not require regularization procedures

Subdominant terms depend on h and ¢ and contain non universal contributions

Particle fluctuations inside the conductors account for reducing
the force by a factor 1/2.

Calculations of the Casimir force based on macroscopic boundary
conditions are not correct when the temperature is different from zero|




Statistical theory of the classical Casimir effect
Particles are classical, no photons
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Each slab contains classical charges of various species €
Each slab is globally neutral

Particles interact by Coulomb potential :
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Coulomb Short range repulsion



The total potential energy is [/ = U, + Up + Uyp

f

Particles in AA Particles in AB Pair interactions between AA and Ap
The two slabs are in thermal equilibrium at the same temperature T

with Gibbs weight exp(—3U)

The force per unit surface is
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Inhomogeneous static structure function of the two slab system

Central problem : Find the asymptotic form of the charge
correlation function between the two slabs for large d.




Study the Ursell function by the techniques of Mayer graphs
and integral equations for Coulomb fluids
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local inverse Debye screening length £p(r)

Debye-Htickel equation
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Asymptotic potential | ¢ p(x, 2", L) ~ - :
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Charge atthe
" boundary

Electroneutrality sum rules

The total charge of the screening cloud around a specified charge
in the system compensates it exactly

Interpretation in the slab
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\ charge density at r conditionned
by the presence of a charge e, at r’
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Final result (f) (d) ~ - G(3)
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Decoupling of classical matter and radiation:

The Bohr-van Leuween theorem

Classical matter in thermal equilibrium decouples from the
transverse part of the electromagnetic field

Proof :
Shift the variable p — $A(r)—»p in the momentum integral in the partition function
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In the long distance-high temperature limit, the system
tends to behave classically. The Casimir effect becomes
dominated by pure electrostatic forces.



The general qguantum model: Use functional integral
representation —— classical-like formalism

Bosonic functional integral representation of the photon field

Coherent state for mode (kA) aka|oka) = oxa|aky)  |e) =1k, o)

leads to the functional integral representation:
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Feynman-Kac-Ito path integral representation

Normalized conditional Wiener
measure for closed path £(s)
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Particle in an external potential
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Thermal wave length
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Flux of the magnetic field Action of the potential

Classical-like structure

Point qguantum charge => Random charged filament
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£(s), 0 < s <1, £0) =&(1) =0 Brownian path—» internal degree of freedom

g - ( r 5 ) Enlarged phase space



Many particle system
Pair Coulomb interaction
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Important observation

Decompose V' (i,7) = Vaee(2,7) + W,(1, 7)
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genuine classical electrostatic potential between two charged wires :
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part of V (i, j) due to intrinsic quantum fluctuations

We(,J) is asymptotically dipolar :
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Fluctuating dipoles
Quantum charge behave as fluctuating multipoles (« structured charges »)



The effective magnetic potential

Averaging on the degrees of freedom of the field yields an effective magnetic
interaction between filaments :
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Interpretation of the magnetic potential:
current-current interaction
between currents carried by the loops (9 i(y)

WW..[i, 7) s dipolar at large distances



In the space of loops all the techniques of classical statistical
mechanics are available, using the basic two body potentials
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Proceed as in the analysis of the classical model:
Cluster expansion, Mayer series....

Leads to the same result:
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Universality follows from screening sum rules
In the space of loops



Open questions

How to deal with the low temperature-short distance regime
within the microscopic model ?

Is the standard Casimir force formula modified by quantum
charge fluctuations in the ground state of the metals ?

Corrections to the leading asymptotic term ?

Make explicit connections with Lifshitz theories

Related results: retardation effects in the theory of
van der Waals forces (work in progress)



