
Casimir energy between a plane and a sphere in 

electromagnetic vacuum

Paulo A. Maia Neto
Instituto de Física

 

Fluctuation-Induced Interactions - KITP-UCSB

14/11/2008 



Collaborators

Serge Reynaud (LKB-ENS, Paris)

Astrid Lambrecht (LKB-ENS, Paris)

Ines Cavero-Pelaez (LKB-ENS, Paris)

Diego Dalvit (LANL, Los Alamos)

  Different applications of the scattering approach

Robson Rodrigues (UFRJ, Rio de Janeiro)

 Plane-sphere geometry



Outline

 Geometry and the Casimir effect

 Scattering approach 

 Plane-sphere geometry



 Geometry and the Casimir effect

Motivation: 
Many modern experiments use the plane-sphere geometry:

  Lamoreaux, Mohideen, Capasso, Decca, ...

Proposed experiment with plane and cylinder  (Onofrio et al)

Radius 
R

Proximity Force (Derjaguin) 
Approximation (PFA): take the 
plane-plane result for the local 
distances 

How accurate is the PFA 
for a given L/R ?

- See Krause+Decca+Lopez+Fischbach for experimental approach (2007)



 Geometry and the Casimir effect (motivation)

Roughness correction to the Casimir attraction

0z Z z

Such that
(correlation length)

~

z

More important at short distances

Another relevant issue for mastering the quality of theory/experiment 
comparisons…



Geometry and the Casimir effect 

Theory/experiment comparison: we need to 
consider...

 the electromagnetic field

 real metals with finite conductivity 



 Geometry and the Casimir effect - theory

Scalar vs electromagnetic: not a simple factor 2 from 
polarization !

Example with plane symmetry: dissipative force on a 
single moving mirror (velocity v(t), area A)

Scalar vacuum field
Ford+Vilenkin (1982)

Electromagnetic vacuum field
PAMN (1994)

3+1 (nonrelativistic limit: v/c <<1)

12 x larger !!



 Geometry and the Casimir effect - theory

...transition to electromagnetic (EM) case is often simpler 
when geometry contains a direction of translational 
symmetry ..

.....not trivial for spherical geometries...

Different physics involved: no s-wave scattering in the EM 
case !

Why electromagnetic models ?



Casimir energy (as a function of separation 
distance) with plasma model for metallic media

Power law modification as in Van der 
Waals – Casimir-Polder interatomic 
potential

- from Lifshitz theory (1956)

Surface plasmons (Van Kampen et 
al 1968)

plasma frequency

 Geometry and the Casimir effect - theory

Why real materials ?

Perfect reflectors - Casimir 1948
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beyond the plasma model:
A. Lambrecht and S. Reynaud, Eur. Phys. J. D8 309 (2000)

1

F

FCAS

L

e−κL

r1r2e
−2κLE = E

F =
π2

240

!c

d4
A

E = − π2

720

!c

d3
A

c/L" ωP

c/L# ωP

EPP(L) = −0.0245 ωP
!cA

2πL2

EPP(L) = − π2

720

!cA

L3

 Geometry and the Casimir effect - theory

Why real materials ?

Casimir energy 
proportional to         for 
small       ...

and satures at value 
independent of      for large  
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Approximation methods

- Proximity Force Approximation (Derjagin) - take local 
distances

- Pairwise summation of vdWaals/Casimir-Polder interatomic 
potentials (Hamaker approach)

 Geometry and the Casimir effect - theory

Problem if medium is not rarefied: van der Waals 
interaction  is not additive !!  

Plane-plane case must be 
corrected by comparison 

with exact result ...

... and then the same correction factor is 
employed for different geometries (ok for 

nearly plane surfaces – PFA limit)

(Dipole moments are not 
prescribed: they are 
induced  by the other 
particles’ dipole moments)



 Geometry and the Casimir effect - theory

Some theoretical tools
Numerical approaches

World-line Monte-Carlo – Gies, Langfeld (2001)  - no EM implementation so far

Finite-difference numerical evaluation of Green function – Rodriguez et al  (2007) 
– EM, real materials.

Scattering aproach and non-trivial geometries

Balian+Duplantier  - Multiple scattering 

Lambrecht+PAMN+Reynaud - Lifshitz formula generalized for non-planar 
scatterers 

Kenneth+Klich - `TGTG’ formula, Bordag, Bulgac+Magierski+Wirzba, Milton
+Wagner,  Emig+Graham+Jaffe+Kardar  - displacement+T
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 Scattering approach

Lifshitz (1956) in a particular case (3 media with two plane interfaces)

Kats (1977): expression in terms of reflection coefficients

normal modes:

More general derivations along the time...

Lossy plates: Genet+Lambrecht+Reynaud Phys Rev A (2003)

Also applies for magnetic media, generalizations for anisotropic materials 
(see Felipe da Rosa talk for applications to metamaterials)

Lifshitz formula

1 2
Closed loops

r1

r2

Sum over 
polarizations
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 Scattering approach

Generalizing for non-planar surfaces

Lifshitz formula as a limiting case:      and      
diagonal (specular reflection)

Non-specular reflection operators      
and      : change k and polarization p

(Diego’s talk)

Closed loops with 
nonplanar surfaces
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Second-order contribution of first-order 
reflection coefficients (at the same 
mirror) to closed loops

Second-order roughness correction – 
PAMN, Lambrecht, Reynaud 2005 

First-order 
rough 
reflections

 Scattering approach

Results from scattering formula coincide with those from more 
‘standard’ approaches !



Casimir Torque between corrugated 
surfaces: Rodrigues+PAMN+Lambrecht

+Reynaud (2006)

λ = 1.2 μm

 λ = 2.4 μm

 Scattering approach

another application:

λ
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 Scattering approach

Emig 2007: formula for a body in front of a perfectly 
reflecting plane, based on the method of images.

PAMN+Lambrecht+Reynaud (march 2008): formalism for 
real materials (ex: metals with finite conductivity)

Plane-sphere Casimir 
energy within the 
scattering approach

Bordag, Bulgac+Magierski+Wirzba: scalar field models, analytical 
results for first-order correction to PFA



 Plane-sphere geometry

Casimir energy
S

P

better adapted to...

Plane wave basis vs Multipole basis 

Scattering by plane (P) 
and free propagation

Scattering by sphere (S) 
and determinant 

evaluation



Plane waves for a given 
frequency ω

Multipoles for a given 
frequency ω

E = electric multipoles, M = magnetic multipoles

 Plane-sphere geometry



 Plane-sphere geometry

Axial symmetry: 

z

Usual Fresnel 
reflection 

coefficients 
(as in Lifshitz 

formula!)



 Plane-sphere geometry

Scattering by the sphere: in classical 
optics, one usually needs just the matrix 

elements (propagation along z-axis)
scattering amplitudes:

 Mie coefficients 
Electric 

multipoles: 
P=E

Magnetic 
multipoles: 

P=M 
a

l
(iξ) b

l
(iξ)

Rotating the incident plane wave with the help of  finite rotation 
matrix elements 
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Mie scattering with very small spheres: Rayleigh limit

- If  R << λvac/n, λvac,, then a1 (electric dipole) dominates over 
higher multipoles (including magnetic dipole b1)

- Translating to Casimir theory: λvac ~ L, then condition reads 

R << L, L/n

- We find from the previous results (α is the sphere polarizability)

 Plane-sphere geometry

vdWaals/Casimir-Polder interaction !!

Diego’s talk
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 Plane-sphere geometry

Simpler expressions in the case of perfect reflectors, taken 
as the limiting case of the plasma model for very short 
plasma wavelengths λP 

- For the plane: rTE = -1, rTM = 1              allows us to add 
analitically over p 

- For the sphere, it is not sufficient to consider the limit 
n>>1 if the sphere is small...one also needs R >> λvac/n ...

..translating to Casimir theory: λP<<L  and λP << R 

No intersection with Rayleigh limit !



 Plane-sphere geometry

Perfectly-reflecting limit:

PFA limit:
When L << R, we have ξR/c  >> 1 (for typical values of ξ) 
and then a

l
(iξ), b

l
(iξ) ~ exp(2ξR/c)

Edge showing 
up !
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 Plane-sphere geometry

Small, perfectly-reflecting sphere: λP<< R << L

Electric and magnetic dipoles are of the same order !

Neglect higher multipoles

‘Casimir-Polder’ with magnetic dipole contribution

T. Emig (2008) from 
model of perfect 

reflectivity

no intersection with 
Rayleigh limit 
(R << λP << L )



 Plane-sphere geometry

What are the typical values of angular momentum l 
when we approach the PFA limit ? 

Localization principle

H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering, 
Cambridge 1992

When λ=2π/k << R, l corresponds to rays 
with impact parameter B given by

l = k B

p = ħ k

Rays with B > R provide negligible contributions



B

a typical Mie scattering numerical calculation

from R S Dutra , N B Viana , PAMN and H M 
Nussenzveig, J. Opt. A: Pure Appl. Opt. 9 (2007) 
S221

 Plane-sphere geometry

R = 4.5 µm

1
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Mie resonances: 
optical whispering 

gallery modes 
contribution of (slightly) 

above-edge rays:  l >  ωR/c
lie close to the real 

axis ....ouufff...!

localization principle l =  ωB/c

 converges at l ~ ωR/c
 partial sum oscillates with l

 strong variation with frequency



 Plane-sphere geometry

Numerical calculation

Comparing with the Proximity Force Approx (PFA) result

0.16



Summary

  Scattering approach was employed to compute the Casimir 
interaction energy between a plane and a sphere 

  Our approach allows for the computation in the case of real metals 
with finite conductivity

  Numerical calculation in the case of perfectly-reflecting surfaces. 
PFA is less accurate in the electromagnetic case (than in the scalar 
model) – correction is ~ 8 x larger in the EM case!

  Numerical calculation in the more general case will provide the 
correction to the Proximity Force Approx. result for a given L/R under 
realistic conditions 

For details see PAMN, A Lambrecht and S Reynaud, Phys. Rev. A 78, 012115 (2008) 


