Casimir energy between a plane and a sphere in electromagnetic vacuum

Fluctuation-Induced Interactions - KITP-UCSB 14/I I/2008

Collaborators

\checkmark Plane-sphere geometry

> Ines Cavero-Pelaez (LKB-ENS, Paris)

Astrid Lambrecht (LKB-ENS, Paris)
Serge Reynaud (LKB-ENS, Paris)
$\checkmark \quad$ Different applications of the scattering approach
Diego Dalvit (LANL, Los Alamos)
Robson Rodrigues (UFRJ, Rio de Janeiro)

Outline

- Geometry and the Casimir effect
- Scattering approach
- Plane-sphere geometry

Geometry and the Casimir effect

Motivation:

* Many modern experiments use the plane-sphere geometry:

Lamoreaux, Mohideen, Capasso, Decca, ...

$$
\begin{aligned}
& R \gg L \\
& \text { Proximity Force (Derjaguin) } \\
& \text { Approximation (PFA): take the } \\
& \text { plane-plane result for the local } \\
& \text { distances } \\
& \text { How accurate is the PFA } \\
& \text { for a given } L / R \text { ? }
\end{aligned}
$$

 \overleftrightarrow{L}

- See Krause+Decca+Lopez+Fischbach for experimental approach (2007)
* Proposed experiment with plane and cylinder (Onofrio et al)

Geometry and the Casimir effect (motivation)

Another relevant issue for mastering the quality of theory/experiment comparisons...

* Roughness correction to the Casimir attraction

More important at short distances

Geometry and the Casimir effect

Theory/experiment comparison: we need to consider...

the electromagnetic fieldQ real metals with finite conductivity

Geometry and the Casimir effect - theory

Scalar vs electromagnetic: not a simple factor 2 from polarization !

Example with plane symmetry: dissipative force on a single moving mirror (velocity $v(t)$, area A)
$3+1$ (nonrelativistic limit: $v / \mathrm{c} \ll 1$)

Scalar vacuum field Ford+Vilenkin (1982)	Electromagnetic vacuum field PAMN (1994)
$F(t)=-\frac{1}{360 \pi^{2}} \frac{\hbar A}{c^{4}} \frac{d^{4} v(t)}{d t^{4}}$	$F(t)=-\frac{1}{30 \pi^{2}} \frac{\hbar A}{c^{4}} \frac{d^{4} v(t)}{d t^{4}}$

Geometry and the Casimir effect - theory

Why electromagnetic models ?
...transition to electromagnetic (EM) case is often simpler when geometry contains a direction of translational symmetry ..
.....not trivial for spherical geometries...
Different physics involved: no s-wave scattering in the EM case!

Geometry and the Casimir effect - theory

Why real materials ?

Casimir energy (as a function of separation distance) with plasma model for metallic media

$c / L \gg \omega_{P} \rightarrow$ plasma frequency
Surface plasmons (Van Kampen et al 1968)
$E_{\mathrm{PP}}(L)=-0.0245 \omega_{P} \frac{\hbar c A}{2 \pi L^{2}}$
$c / L \ll \omega_{P}$
Perfect reflectors - Casimir 1948
$E_{\mathrm{PP}}(L)=-\frac{\pi^{2}}{720} \frac{\hbar c A}{L^{3}}$
Power law modification as in Van der Waals - Casimir-Polder interatomic potential

Geometry and the Casimir effect - theory

Why real materials ?

Casimir energy proportional to ω_{P} for small ω_{P}...
and satures at value independent of ω_{P} for large ω_{P}

beyond the plasma model:
A. Lambrecht and S. Reynaud, Eur. Phys. J. D8 309 (2000)

Geometry and the Casimir effect - theory

Approximation methods

- Proximity Force Approximation (Derjagin) - take local distances
- Pairwise summation of vdWaals/Casimir-Polder interatomic potentials (Hamaker approach)

```
Problem if medium is not rarefied: van der Waals interaction is not additive !!
``` (Dipole moments are not prescribed: they are induced by the other particles' dipole moments)


3

Plane-plane case must be corrected by comparison with exact result ...
... and then the same correction factor is employed for different geometries (ok for nearly plane surfaces - PFA limit)

\section*{Geometry and the Casimir effect - theory}

Some theoretical tools

\section*{Numerical approaches}

World-line Monte-Carlo - Gies, Langfeld (2001) - no EM implementation so far
Finite-difference numerical evaluation of Green function - Rodriguez et al (2007) - EM, real materials.
```

Scattering aproach and non-trivial geometries
Balian+Duplantier - Multiple scattering
Lambrecht+PAMN+Reynaud - Lifshitz formula generalized for non-planar
scatterers
Kenneth+Klich - `TGTG` formula, Bordag, Bulgac+Magierski+Wirzba, Milton
+Wagner, Emig+Graham+Jaffe+Kardar - displacement+T

```

\section*{Scattering approach}

\[
\kappa=\sqrt{(\xi / c)^{2}+k^{2}}
\]

Lifshitz (1956) in a particular case (3 media with two plane interfaces)
Kats (1977): expression in terms of reflection coefficients

normal modes: \(\quad r_{1} r_{2} e^{-2 \kappa L} E=E\)
Closed loops

More general derivations along the time...
Lossy plates: Genet+Lambrecht+Reynaud Phys Rev A (2003)
Also applies for magnetic media, generalizations for anisotropic materials (see Felipe da Rosa talk for applications to metamaterials)

\section*{Scattering approach}
\[
E_{\mathrm{PP}}=\hbar A \int_{0}^{\infty} \frac{\mathrm{d} \xi}{2 \pi} \int \frac{\mathrm{~d}^{2} k}{(2 \pi)^{2}} \sum_{p} \ln \left(1-r_{1 ; p}(k) r_{2 ; p}(k) e^{-2 \kappa L}\right)
\]

Closed loops with nonplanar surfaces
Generalizing for non-planar surfaces
\[
\mathcal{E}=\hbar \int_{0}^{\infty} \frac{\mathrm{d} \xi}{2 \pi} \operatorname{Tr} \ln \left(1-\mathcal{R}_{1}(i \xi) e^{-\mathcal{K} L} \mathcal{R}_{2}(i \xi) e^{-\mathcal{K} L}\right)
\]
\[
\operatorname{Tr}(\ldots) \equiv \int \frac{\mathrm{d}^{2} k}{(2 \pi)^{2}} \sum_{p}\langle\mathbf{k}, p|(\ldots)|\mathbf{k}, p\rangle
\]

Non-specular reflection operators \(\mathcal{R}_{1}\) and \(\mathcal{R}_{2}\) : change \(\mathbf{k}\) and polarization \(p\) (Diego's talk)
\(\stackrel{\rightharpoonup}{\mathbf{E}}_{p}(\mathbf{k}, \omega)=\int \frac{d^{2} \mathbf{k}^{\prime}}{(2 \pi)^{2}} \sum_{p^{\prime}}\langle\mathbf{k}, p| \mathcal{R}(\omega)\left|\mathbf{k}^{\prime}, p^{\prime}\right\rangle \overleftarrow{\mathbf{E}}_{p^{\prime}}\left(\mathbf{k}^{\prime}, \omega\right)\)

Lifshitz formula as a limiting case: \(\mathcal{R}_{1}\) and \(\mathcal{R}_{2}\) diagonal (specular reflection)

\section*{Scattering approach}

Results from scattering formula coincide with those from more 'standard' approaches !
\[
\mathcal{E}=\hbar \int_{0}^{\infty} \frac{\mathrm{d} \xi}{2 \pi} \operatorname{Tr} \ln \left(1-\mathcal{R}_{1}(i \xi) e^{-\mathcal{K} L} \mathcal{R}_{2}(i \xi) e^{-\mathcal{K} L}\right)
\]

\section*{Scattering approach}
another application:
Casimir Torque between corrugated surfaces: Rodrigues + PAMN + Lambrecht +Reynaud (2006)

\section*{Scattering approach}

\section*{Plane-sphere Casimir energy within the scattering approach}

Bordag, Bulgac + Magierski + Wirzba: scalar field models, analytical results for first-order correction to PFA

Emig 2007: formula for a body in front of a perfectly reflecting plane, based on the method of images.

PAMN+Lambrecht+Reynaud (march 2008): formalism for real materials (ex: metals with finite conductivity)

\section*{Plane-sphere geometry}

Casimir energy
\[
\begin{aligned}
& \mathcal{E}_{\mathrm{PS}}=\hbar \int_{0}^{\infty} \frac{d \xi}{2 \pi} \log \operatorname{det} \mathcal{D} \\
& \mathcal{D}=1-\mathcal{R}_{\mathrm{S}} e^{-\mathcal{K} \mathcal{L}} \mathcal{R}_{\mathrm{P}} e^{-\mathcal{K} \mathcal{L}}
\end{aligned}
\]

\section*{Plane-sphere geometry}

Plane waves for a given frequency \(\omega\)
\(\left\{|\mathbf{k}, \phi, p\rangle, \mathbf{k} \in \mathbb{R}^{2}, \phi= \pm 1, p=\mathrm{TE}, \mathrm{TM}\right\}\)
\[
k_{z}=\phi \sqrt{\omega^{2} / c^{2}-k^{2}}
\]

Multipoles for a given frequency \(\omega\)
\(\{|\ell, m, P\rangle, \ell=1,2,3 \ldots, m=-\ell, \ldots, \ell, P=\mathrm{E}, \mathrm{M}\}\)
\(\mathrm{E}=\) electric multipoles, \(\mathrm{M}=\) magnetic multipoles

\section*{Plane-sphere geometry}
\[
\begin{aligned}
& \mathcal{E}_{\mathrm{PS}}=\hbar \int_{0}^{\infty} \frac{d \xi}{2 \pi} \log \operatorname{det} \mathcal{D} \\
& \mathcal{D}=1-\mathcal{R}_{\mathrm{S}} e^{-\mathcal{K} \mathcal{L}} \mathcal{R}_{\mathrm{P}} e^{-\mathcal{K} \mathcal{L}}
\end{aligned}
\]

Axial symmetry:
\[
\begin{aligned}
& \left\langle\ell_{1}, m_{1}, P_{1}\right| \mathcal{D}\left|\ell_{2}, m_{2}, P_{2}\right\rangle \propto \delta_{m_{1}, m_{2}} \\
& \left\langle\ell_{1}, m, P_{1}\right| \mathcal{D}\left|\ell_{2}, m, P_{2}\right\rangle \equiv \mathcal{D}_{1,2}^{(m)}
\end{aligned}
\]
\[
\left.\mathcal{D}_{1,2}^{(m)}=\delta_{1,2}-\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \sum_{p=\mathrm{TE}, \mathrm{TM}}\left\langle\ell_{1} m P_{1}\right| \mathcal{R}_{S} \right\rvert\, \mathbf{k},+, p\left(r_{p}(\mathbf{k}) e^{-2 \kappa \mathcal{L}}\left\langle\mathbf{k},-, p \mid \ell_{2} m P_{2}\right\rangle\right.
\]

\section*{Plane-sphere geometry}

Scattering by the sphere: in classical optics, one usually needs just the matrix elements (propagation along \(z\)-axis)
\(\langle\ell m P| \mathcal{R}_{S}|\mathbf{0},+, p\rangle\)\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c}
scattering amplitudes: \\
Mie coefficients
\end{tabular}} \\
\hline \begin{tabular}{c}
Electric \\
multipoles: \\
\(P=\mathrm{E}\)
\end{tabular} & \begin{tabular}{c}
Magnetic \\
multipoles: \\
\(P=\mathrm{M}\)
\end{tabular} \\
\hline\(a_{\ell}(\mathrm{i} \xi)\) & \(b_{\ell}(\mathrm{i} \xi)\) \\
\hline
\end{tabular}

Rotating the incident plane wave with the help of finite rotation matrix elements
\[
\begin{aligned}
d_{m, m^{\prime}}^{\ell}(\theta) & \equiv\langle\ell m| e^{-i J_{y} \theta / \hbar}\left|\ell m^{\prime}\right\rangle \\
\langle\ell m \mathrm{E}| \mathcal{R}_{\mathrm{S}}|\mathbf{k},+, \mathrm{TE}\rangle & \sim a_{\ell}(i \xi)\left(d_{m, 1}^{\ell}\left(\theta_{k}\right)+d_{m,-1}^{\ell}\left(\theta_{k}\right)\right)
\end{aligned}
\]

\section*{Plane-sphere geometry}

Mie scattering with very small spheres: Rayleigh limit

- If \(R \ll \lambda_{\mathrm{vac}} / n, \lambda_{\text {vac }}\), then \(a_{1}\) (electric dipole) dominates over higher multipoles (including magnetic dipole \(b_{1}\))
- Translating to Casimir theory: \(\lambda_{\text {vac }} \sim \mathcal{L}\), then condition reads
\[
R \ll \mathcal{L}, \mathcal{L} / n
\]
- We find from the previous results (\(\alpha\) is the sphere polarizability)
\[
\begin{gathered}
a_{1}(i \xi) \approx-\frac{2}{3}\left(\frac{\xi}{c}\right)^{3} \frac{\alpha}{4 \pi \epsilon_{0}} \quad \alpha=4 \pi \epsilon_{0} \frac{\epsilon-1}{\epsilon+2} \\
\mathcal{E}_{C}=\frac{\hbar}{2 \epsilon_{0}} \int_{0}^{\infty} \frac{d \xi}{2 \pi} \frac{d^{2} k}{(2 \pi)^{2}} e^{-2 \kappa \mathcal{L} \mathcal{L}} \frac{\hat{\xi}^{2}}{\kappa} \alpha(i \xi)\left[r_{\mathrm{TE}}(k, \xi)-\left(1+2 k^{2} / \hat{\xi}^{2}\right) r_{\mathrm{TM}}(k, \xi)\right] \\
\underbrace{}_{\text {vdWaals/Casimir-Polder interaction !! }}
\end{gathered}
\]

\section*{Plane-sphere geometry}
\[
\mathcal{D}_{1,2}^{(m)}=\delta_{1,2}-\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \sum_{p=\mathrm{TE}, \mathrm{TM}}\left\langle\ell_{1} m P_{1}\right| \mathcal{R}_{S}|\mathbf{k},+, p\rangle r_{p}(\mathbf{k}) e^{-2 \kappa \mathcal{L}}\left\langle\mathbf{k},-, p \mid \ell_{2} m P_{2}\right\rangle
\]

Simpler expressions in the case of perfect reflectors, taken as the limiting case of the plasma model for very short plasma wavelengths \(\boldsymbol{\lambda}_{\mathrm{P}}\)
- For the plane: \(r_{\mathrm{TE}}=-1, r_{\mathrm{TM}}=1 \Longleftrightarrow\) allows us to add analitically over \(p\)
- For the sphere, it is not sufficient to consider the limit \(n \gg 1\) if the sphere is small...one also needs \(R \gg \lambda_{\mathrm{vac}} / n \ldots\) ..translating to Casimir theory: \(\lambda_{\mathrm{P}} \ll \mathcal{L}\) and \(\lambda_{\mathrm{p}} \ll R\)

No intersection with Rayleigh limit!

\section*{Plane-sphere geometry}

Perfectly-reflecting limit:
\[
\begin{gathered}
\mathcal{D}_{\ell_{1} \mathrm{E}, \ell_{2} \mathrm{E}}^{(m)}=\delta_{\ell_{1} \ell_{2}}+\frac{1}{2} \sqrt{\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)} a_{\ell_{1}} \mathcal{F}_{\ell_{1}, \ell_{2}, m}^{(+)} \\
\mathcal{D}_{\ell_{1} \mathrm{M}, \ell_{2} \mathrm{M}}^{(m}=\delta_{\ell_{1} \ell_{2}}-\frac{1}{2} \sqrt{\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)} b_{\ell_{1}} \mathcal{F}_{\ell_{1}, \ell_{2}, m}^{(+)} \\
\mathcal{D}_{\ell_{1} \mathrm{E}, \ell_{2} \mathrm{M}}^{(m}=\frac{i}{2} \sqrt{\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)} a_{\ell_{1}} \mathcal{F}_{\ell_{1},\left(\ell_{2}, m\right.}^{(-)} \\
\mathcal{D}_{\ell_{1} \mathrm{M}, \ell_{2} \mathrm{E}}^{(m)}=\frac{i}{2} \sqrt{\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)} b_{\ell_{1}, 1} \mathcal{F}_{\ell_{1}, \ell_{2}, m}^{(-)} \\
\left.\mathcal{F}_{\ell_{1}, \ell_{2}, m}^{(\pm)}=(-)^{\ell_{2}+m} \int_{1}^{\infty} \operatorname{d\operatorname {cos}\theta e^{-2\xi \mathcal {L}\operatorname {cos}\theta /c}[d_{m,1}^{\ell _{1}}(\theta)d_{m,1}^{\ell _{2}}(\theta)\pm (-)^{\ell _{1}-\ell _{2}}d_{m,1}^{\ell _{1}}(\pi -\theta)d_{m,1}^{\ell _{2}}(\pi -\theta)]}\right]
\end{gathered}
\]

\section*{PFA limit:}

When \(L \ll R\), we have \(\xi R / \mathrm{c} \gg 1\) (for typical values of \(\xi\)) and then \(a_{\ell}(\mathrm{i} \xi), b_{\ell}(\mathrm{i} \xi) \sim \exp (2 \xi R / \mathrm{c})\)
\(\longmapsto a_{\ell} \mathcal{F}^{ \pm}, b_{\ell} \mathcal{F}^{ \pm} \sim \exp \left(-\frac{2 \xi L}{c}\right)\)

> \begin{tabular}{c} Edge showing \\ up! \\ \hline \end{tabular}

\section*{Plane-sphere geometry}

Small, perfectly-reflecting sphere: \(\lambda_{\mathrm{P}} \ll R \ll \mathcal{L}\)
Electric and magnetic dipoles are of the same order '
\[
a_{1}(i \xi) \approx-2 b_{1}(i \xi) \approx-\frac{2}{3}\left(\frac{\xi R}{c}\right)^{3}
\]

Neglect higher multipoles

'Casimir-Polder' with magnetic dipole contribution
\[
\mathcal{E}_{\mathrm{PS}}=-\frac{9 \hbar c}{16 \pi} \frac{R^{3}}{\mathcal{L}^{4}}
\]
T. Emig (2008) from model of perfect reflectivity
\[
\begin{aligned}
& \text { no intersection with } \\
& \text { Rayleigh limit } \\
& \left(R \ll \lambda_{\mathrm{P}} \ll \mathcal{L}\right) \\
& \mathcal{E}_{\mathrm{PS}}=-\frac{3 \hbar c}{8 \pi} \frac{R^{3}}{\mathcal{L}^{4}}
\end{aligned}
\]

\section*{Plane-sphere geometry}

What are the typical values of angular momentum \(\ell\) when we approach the PFA limit?
Localization principle
When \(\lambda=2 \pi / k \ll R\), \(\ell\) corresponds to rays with impact parameter \(B\) given by
\[
\ell=k B
\]

Rays with \(B>R\) provide negligible contributions

H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering, Cambridge 1992

\section*{Plane-sphere geometry}

\section*{a typical Mie scattering numerical calculation}

\section*{Plane-sphere geometry}

\section*{Numerical calculation}

Comparing with the Proximity Force Approx (PFA) result

\[
\rho \equiv \frac{\mathcal{E}}{\mathcal{E}^{\mathrm{PFA}}}, \quad \mathcal{E}^{\mathrm{PFA}}=-\frac{\hbar c \pi^{3} R}{720 L^{2}}
\]

\section*{Summary}

O Scattering approach was employed to compute the Casimir interaction energy between a plane and a sphere
O Our approach allows for the computation in the case of real metals with finite conductivity
O Numerical calculation in the case of perfectly-reflecting surfaces. PFA is less accurate in the electromagnetic case (than in the scalar model) - correction is \(\sim 8 \times\) larger in the EM case!
O Numerical calculation in the more general case will provide the correction to the Proximity Force Approx. result for a given \(L / R\) under realistic conditions

For details see PAMN, A Lambrecht and S Reynaud, Phys. Rev. A 78, 012115 (2008)```

