Constrained electrodynamics- numerics and interactions

A.C. Maggs, Samuela Pasquali

CNRS and ESPCI, Paris

Summary

Algorithms

Faster/simpler codes for electrostatics

Thermodynamics of Electric fields
Partition function of electric field

Fluctuations and interactions
Classical fluctuations in dielectrics- numerical methods

Quantum formulation
non-retarded
retarded

Local Algorithm

Vincent Rossetto (Grenoble), Joerg Rottler (UBC)

- The charges q live on the vertices
- $E_{i j}$ field on the links of a cubic lattice.

- When a particle, moves from 1 to 2 then $E_{12} \rightarrow E_{12}-q$
- Metropolis rule

$$
U=\frac{1}{2} \sum_{<i j>} E_{i j}^{2}
$$

Never calculate the potential

Constrained Monte-Carlo: Particle Motion

Flux interpretation of Gauss' law $\int \mathbf{E} \cdot d \mathbf{S}=q$

Gauss constraint is satisfied dynamically (conserved)

Constrained Minimization of Energy

$$
U=\frac{\epsilon_{0}}{2} \int \mathbf{E}^{2} \mathrm{~d}^{3} \mathbf{r}
$$

with $\quad \operatorname{div} \mathbf{E}=\rho / \epsilon_{0}$
Lagrange multiplier to minimize:

$$
\mathcal{A}=\int \frac{\epsilon_{0}}{2} \mathbf{E}^{2}-\phi\left(\epsilon_{0} \operatorname{div} \mathbf{E}-\rho\right) \mathrm{d}^{3} \mathbf{r}
$$

leading to

$$
\begin{aligned}
\delta \mathbf{E}: \quad \mathbf{E} & =-\nabla \phi_{p} \\
\nabla^{2} \phi_{p} & =-\rho / \epsilon_{0}
\end{aligned}
$$

Constrained Statistical Mechanics

Define:

$$
Z(\mathbf{r})=\int \delta\left(\operatorname{div} \mathbf{E}-\rho / \epsilon_{0}\right) \mathcal{D} \mathbf{E} \exp \left(-\beta \frac{\epsilon_{0}}{2} \int \mathbf{E}^{2} \mathrm{~d}^{3} \mathbf{r}\right)
$$

Gaussian, but constrained, sample with two MC moves.

Lattice Boltzmann hydrodynamics
Dirac quantization in field theory

Inhomogeneous Media

The basic trick generalizes using the electric displacement

$$
\begin{aligned}
\operatorname{div} \mathbf{D} & =\rho \\
U & =\int \frac{\mathbf{D}^{2}}{2 \epsilon(\mathbf{r})} \mathrm{d}^{3} \mathbf{r}
\end{aligned}
$$

Minimize:- generalized Poisson equation is

$$
\operatorname{div}(\epsilon(\mathbf{r}) \nabla \phi)=-\rho
$$

Statistical mechanics when $\rho=0$

$$
Z_{\text {fluct }}=\int \mathcal{D} \mathbf{D} \delta(\operatorname{div} \mathbf{D}) \exp \left(-\beta \int \frac{\mathbf{D}^{2}}{2 \epsilon(\mathbf{r})} \mathrm{d}^{3} \mathbf{r}\right)
$$

Partition function for electromagnetic field

Fluctuation potentials

A pair of dipoles \mathbf{p}

$$
V_{\text {fluct }} \sim-\frac{\mathbf{p}^{4}}{k T r^{6}}
$$

NOT quantum: Keesom/Debye potential Algorithm sums these potentials, classical Lifshitz Interaction between two plates

Measured with thermodynamic integration

Numerical Modeling

Typical atomistic code
■ Lennard-Jones, Coulomb
■ Neglect collective multibody interactions
■ Neglects screening of Keesom
■ Quantum chemistry usually neglects all long range interactions

Numerical methods

Large amounts of analytic work in special geometries

- MC algorithm includes fluctuation potentials

■ measuring them is difficult- statistics, asymptotics
■ would like tool to evaluate interaction in general geometry
■ importance of multi-body interactions
■ "difficult geometries"- points, rough surfaces where perturbation theory might not work

Parallel work by Steven Johnson et al. MIT.

Transformation of partition function

Impose constraint using multiplier,

$$
A=\frac{\mathbf{D}^{\mathbf{2}}}{2 \epsilon(\mathbf{r})}-i \phi(\operatorname{div} \mathbf{D})
$$

Integrate over D, being careful with zero modes:

$$
Z(\epsilon)=\int \mathcal{D} \phi \exp \left(-\beta \int \epsilon(\mathbf{r}) \frac{(\nabla \phi)^{2}}{2} \mathrm{~d}^{3} \mathbf{r}\right)
$$

avoiding integral over $q=0$.

$$
F \sim k_{B} T \operatorname{Tr}^{\prime} \log (-\operatorname{div} \epsilon \operatorname{grad})
$$

How can we study this determinant numerically?

Evaluating the determinant

Discretize- finite difference $(\operatorname{grad} \phi) \rightarrow \phi_{i}-\phi_{j}$

- Direct methods
- Iterative methods:- Lanczos
- Factorization
- Reordering+Factorization

Failures

Direct Methods

■ In 3D $V=L^{3}$ sites

- V^{3} operations required to diagonalize
- Effort L^{9}
- $L=10$ in about 1 second, $L=20$ takes 20 minutes
- Memory requirements L^{6}, hit wall again at $L=20,(500 M B)$

Lanczos

widely used in physics
Good for a few EV, gives spurious results if one looks for all EV

Factorization

Cholesky for positive definite matrix

$$
M=A A^{T}
$$

A lower triangular

Determinant from diagonal elements of A
Laplacian, $L=20$

Remarkably A remains sparse

Reordering

Nested dissection, (George 1973): better Cholesky

Up to $L=120$ on a workstation in about 15 minutes. Limited by main memory.

Non-Additivity of Interactions

Thermal interactions in complicated 3D geometry

Compare with proximity force approximation

Quantum, non-retarded

Start with explicit model of dipoles, path integral quantization, $0<\tau<\beta$

$$
\begin{aligned}
\mathcal{L}(i \tau) & =\frac{\rho(\mathbf{r})}{2}\left(\frac{d \mathbf{P}}{d \tau}\right)^{2}+U_{p} \\
U_{p} & =\frac{(\overbrace{\mathbf{D}-\mathbf{P}})^{2}}{2}+\frac{\mathbf{P}^{2}}{2 \chi}
\end{aligned}
$$

Again (constrained) Gaussian integrals- determinants Find

$$
Z=\prod_{n} Z\left(\epsilon\left(\omega_{n}\right)\right)
$$

Product over Matsubara frequencies. Need $O(50)$ frequencies for $\epsilon(0)=5, \hbar \omega_{0} / k T=10$. $O(15)$ frequencies for $T=0$.
Valid up to 20 nm

Quantum retarded

Need to evaluate larger determinants

$$
\left.\left\lvert\, \frac{\omega^{2} \epsilon(\mathbf{r}, i \omega)}{\hbar^{2} c^{2}}\right.\right)+\operatorname{curl} \operatorname{curl} \mid
$$

$3 V \times 3 V$ matrix, rather than $V \times V$ Limited to $L<70$. Comes from the wave equation for the vector potential

$$
\left(\frac{-\omega^{2} \epsilon \mathbf{A}}{c^{2}}+\operatorname{curl} \operatorname{curl} \mathbf{A}\right)=\mathbf{J}
$$

in temporal gauge.

Numerical results

- Exploration of geometries
- Are discretization errors unacceptable?
- How fine a discretization can we evaluate?
- Simple spectra- not limiting
- Simulations with 1 Dell-week.

Torque measurements

■ Interaction between two disks,
■ Test of self energy subtractions

■ Box size $L=63$, diameter $D=42$
■ Matrix dimensions 750000^{2}
Fully retarded regime with $\epsilon(\omega)=$ const.

Interaction between 2 particles, 2-dimensions

Test of frequency integration, $L=2000$.

■ Non-retarded $U \sim 1 / r^{4}$ (Solid blue line)
■ Retarded $U \sim 1 / r^{5}$
■ $\epsilon(i \omega)=1+\chi /\left(1+\omega^{2} / \Delta^{2}\right)$
■ Cross-over determined by c / Δ

Rough surface, Retarded

■ $L=1000$, random walk interface. Average over 1000 realizations
■ Flat surface $U \sim 1 / r^{3}$.

Corrections to interaction $\delta U \sim 1 / r^{4}$.

cf. Li and Kardar (1991)

Exotic dielectric media, water $\epsilon(q)$

Figure 1: MD- Bopp, Kornyshev, Sutmann, 1995

Non-local dielectrics

How to produce $\epsilon(k)$

- Constraint

$$
\operatorname{div} \mathbf{D}=0
$$

■ Field energy, (Landau-Ginzburg) for polarization P

$$
U=\frac{(\overbrace{\mathbf{D}-\mathbf{P}})^{2}}{2}+\frac{\mathbf{P}^{2}}{2 \chi}+\frac{\kappa_{p}}{2}(\operatorname{div} \mathbf{P})^{2}
$$

Water requires $\kappa_{p}<0$ (Cf. Ice models)
"Hydrophobic" interactions in nano length scales

Conclusions

- $O(N)$ Monte-Carlo algorithm for Coulomb interactions
- Inhomogeneous $\epsilon(\mathbf{r})$
- Automatically adds in classical fluctuation interactions
- Molecular dynamics implementations also available
- Sparse matrix methods allow detailed study of complicated geometries
- 200 lines in matlab
- Can also exploit 2+1 dimensions/uniform blocks

