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Summary
Algorithms

Faster/simpler codes for electrostatics

Thermodynamics of Electric fields

Partition function of electric field

Fluctuations and interactions

Classical fluctuations in dielectrics- numerical methods

Quantum formulation

non-retarded
retarded
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Local Algorithm

Vincent Rossetto (Grenoble), Joerg Rottler (UBC)
= The charges ¢ live on the vertices

= F;; field on the links of a cubic lattice.
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q—=

= When a particle, moves from 1 to 2 then E12 — EF12 — ¢

= Metropolis rule
U 1 E2
) Z ij

<ij>
Never calculate the potential
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Constrained Monte-Carlo: Particle Motion

Flux interpretation of Gauss’ law [ E - dS = ¢
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Gauss constraint is satisfied dynamically (conserved)
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Constrained Minimization of Energy

€0 2 13
U=— | E“d°’r
2

with div E = p/Eo
Lagrange multiplier to minimize:

A = / B2 — ¢(eydiv E — p) d®r

leading to
)E: E=-Vg¢,
V2¢p = —p/eo
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Constrained Statistical Mechanics

Define:

Z(r) = /5(div E — p/eg) DE exp (—5%0 /E2 d%)

Gaussian, but constrained, sample with two MC moves.

Lattice Boltzmann hydrodynamics
Dirac quantization in field theory
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Inhomogeneous Media

The basic trick generalizes using the electric displacement

divD = p
D2
U = d3r
2¢(r)

Minimize:- generalized Poisson equation is

div (e(r)V¢) = —p

Statistical mechanics when p =0

D?
= v D — 3
Z fluct /DD o (di ) exp ( 15} 2e(r) d r)

Partition function for electromagnetic field
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Fluctuation potentials

A pair of dipoles p

p4

kTr6
NOT guantum: Keesom/Debye potential
Algorithm sums these potentials, classical Lifshitz
Interaction between two plates

Vfluct ~

A =l
O a=05 =
— analyticresult| 3
— - pairwise

-F(h,b=1.0) L*/(k,T)

10 1

Measured with thermodynamic integration
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Numerical Modeling

Typical atomistic code
= | ennard-Jones, Coulomb

= Neglect collective multibody interactions
= Neglects screening of Keesom

= Quantum chemistry usually neglects all long range
Interactions
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Numerical methods

Large amounts of analytic work in special geometries
= MC algorithm includes fluctuation potentials

= measuring them is difficult- statistics, asymptotics
= would like tool to evaluate interaction in general geometry
= importance of multi-body interactions

= “difficult geometries”- points, rough surfaces where
perturbation theory might not work

Parallel work by Steven Johnson et al. MIT.

- p. 10/25




Transformation of partition function

Impose constraint using multiplier,

D2

A= 2¢(r)

— 1¢p(div D)
Integrate over D, being careful with zero modes:

2= [ Do exp (-5 [T )

avoiding integral over ¢ = 0.
F ~ kT Tt log (—div e grad )

How can we study this determinant numerically?
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Evaluating the determinant

Discretize- finite difference (grad ¢) — ¢; — ¢,
= Direct methods

» |terative methods:- Lanczos
m Factorization
= Reordering+Factorization
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Fallures

Direct Methods

In 3D V = L3 sites

= V3 operations required to diagonalize

Effort L°

L =10 in about 1 second, L = 20 takes 20 minutes

Memory requirements L°, hit wall again at L = 20, (500M B)

Lanczos

widely used in physics
Good for a few EV, gives spurious results if one looks for all EV
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Factorization

Cholesky for positive definite matrix
M = AAT
A lower triangular

Determinant from diagonal elements of A

Remarkably A remains sparse

Laplacian, L = 20

nz = 38880
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Reordering

Nested dissection, (George 1973): better Cholesky M
factors : =
s S=L%t=L%in3D o 3
s S=1TL2%logL,t=L3in2D ; %
3000 ™ eelB Tk d ] f: ]
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. ] ] - ] 5000 Mn ‘#: o ‘:; N f“:!" ; ?::'. {2? i
1to9 = ¢ o t o ¢ = 22030 e
L L] L L L
19t0 21 s—e—s { e—e—s 40 to 42 AT
. . . . .
10 to 18 I R }-311;::.39 WY
18 49 39 ; 5
e
. . - 43
Up to L = 120 on a workstation in about 15 minutes. i
Limited by main memory. _

nz = 488275

- p. 15/25




Non-Additivity of Interactions

Thermal interactions in complicated

3D met Gep=®
geometry T
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Dielectric contrast

Compare with proximity force approximation
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Quantum, non-retarded

Start with explicit model of dipoles, path integral quantization,

O<7T<p
2
. p(r) (dP
L(iT) = 5 (dT) + U,
E
—~
U—(D_P)2+P—2
b 2 2

Again (constrained) Gaussian integrals- determinants

Find
7 = H Z(e(wn))

Product over Matsubara frequencies. Need O(50) frequencies
for e(0) = 5, hwo /KT = 10. O(15) frequencies for T = 0.
Valid up to 20nm
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Quantum retarded

Need to evaluate larger determinants

we(r, iw)

h2c?

) + curl curl

3V x 3V matrix, rather than V' x V Limited to L < 70. Comes
from the wave equation for the vector potential

2
( - EA—I—curl curl A) =J

2

In temporal gauge.
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Numerical results

Exploration of geometries

Are discretization errors unacceptable?
How fine a discretization can we evaluate?
Simple spectra- not limiting

Simulations with 1 Dell-week.
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Torgue measurements

Interaction between two disks, B T e BT I BT
Test of self energy subtractions angle(m

s Box size . = 63, diameter
D = 42

= Matrix dimensions 7500002 Fully retarded regime with ¢(w)=const.
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Interaction between 2 particles, 2-dimensions
Test of frequency integration, L = 2000.
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r
= Non-retarded U ~ 1/r* (Solid blue line)

Retarded U ~ 1/r°
e(iw) = 1+ x/(1 +w?/A?)
Cross-over determined by ¢/A
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Rough surface, Retarded

= L = 1000, random walk interface. Corrections to interaction §U ~ 1/r%.

Average over 1000 realizations
» Flat surface U ~ 1/r°.
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cf. Li and Kardar (1991)

- p. 2225




Exotic dielectric media, water  ¢(q)
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Figure 1. MD- Bopp, Kornyshev, Sutmann, 1995
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Non-local dielectrics

How to produce e(k)
= Constraint
divD =0

= Field energy, (Landau-Ginzburg) for polarization P

(D-P)?2 P2

U

Il
+
_|_

w‘@
=
=
T
N

Water requires x, < 0 (Cf. Ice models)
“Hydrophobic” interactions in nano length scales
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Conclusions

= O(N) Monte-Carlo algorithm for Coulomb interactions
= Inhomogeneous ¢(r)

= Automatically adds in classical fluctuation interactions
= Molecular dynamics implementations also available

= Sparse matrix methods allow detailed study of complicated
geometries

= 200 lines in matlab
= Can also exploit 2+1 dimensions/uniform blocks
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