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Summary
Algorithms

Faster/simpler codes for electrostatics

Thermodynamics of Electric fields

Partition function of electric field

Fluctuations and interactions

Classical fluctuations in dielectrics- numerical methods

Quantum formulation

non-retarded
retarded
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Local Algorithm

Vincent Rossetto (Grenoble), Joerg Rottler (UBC)
■ The charges q live on the vertices
■ Eij field on the links of a cubic lattice.

E1 2

q

■ When a particle, moves from 1 to 2 then E12 → E12 − q

■ Metropolis rule

U =
1

2

∑

<ij>

E2

ij

Never calculate the potential
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Constrained Monte-Carlo: Particle Motion

Flux interpretation of Gauss’ law
∫

E · dS = q
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Gauss constraint is satisfied dynamically (conserved)
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Constrained Minimization of Energy

U =
ǫ0
2

∫

E2 d3r

with div E = ρ/ǫ0
Lagrange multiplier to minimize:

A =

∫
ǫ0
2

E2
− φ(ǫ0div E− ρ) d3r

leading to

δE : E = −∇φp

∇
2φp = −ρ/ǫ0
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Constrained Statistical Mechanics
Define:

Z(r) =

∫

δ(div E − ρ/ǫ0) DE exp

(

−β
ǫ0
2

∫

E2 d3r

)

Gaussian, but constrained, sample with two MC moves.

Lattice Boltzmann hydrodynamics
Dirac quantization in field theory
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Inhomogeneous Media

The basic trick generalizes using the electric displacement

div D = ρ

U =

∫
D2

2ǫ(r)
d3r

Minimize:- generalized Poisson equation is

div (ǫ(r)∇φ) = −ρ

Statistical mechanics when ρ = 0

Zfluct =

∫

DD δ(div D) exp

(

−β

∫
D2

2ǫ(r)
d3r

)

Partition function for electromagnetic field
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Fluctuation potentials
A pair of dipoles p

Vfluct ∼ −
p4

kTr6

NOT quantum: Keesom/Debye potential
Algorithm sums these potentials, classical Lifshitz
Interaction between two plates
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Measured with thermodynamic integration
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Numerical Modeling

Typical atomistic code
■ Lennard-Jones, Coulomb
■ Neglect collective multibody interactions
■ Neglects screening of Keesom
■ Quantum chemistry usually neglects all long range

interactions
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Numerical methods

Large amounts of analytic work in special geometries
■ MC algorithm includes fluctuation potentials
■ measuring them is difficult- statistics, asymptotics
■ would like tool to evaluate interaction in general geometry
■ importance of multi-body interactions
■ “difficult geometries”- points, rough surfaces where

perturbation theory might not work

Parallel work by Steven Johnson et al. MIT.
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Transformation of partition function

Impose constraint using multiplier,

A =
D2

2ǫ(r)
− iφ(div D)

Integrate over D, being careful with zero modes:

Z(ǫ) =

∫

Dφ exp

(

−β

∫

ǫ(r)
(∇φ)2

2
d3r

)

avoiding integral over q = 0.

F ∼ kBT Tr′ log (−div ǫ grad )

How can we study this determinant numerically?
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Evaluating the determinant

Discretize- finite difference (grad φ) → φi − φj

■ Direct methods
■ Iterative methods:- Lanczos
■ Factorization
■ Reordering+Factorization
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Failures

Direct Methods

■ In 3D V = L3 sites
■ V 3 operations required to diagonalize
■ Effort L9

■ L = 10 in about 1 second, L = 20 takes 20 minutes
■ Memory requirements L6, hit wall again at L = 20, (500MB)

Lanczos

widely used in physics
Good for a few EV, gives spurious results if one looks for all EV
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Factorization

Cholesky for positive definite matrix

M = AAT

A lower triangular

Determinant from diagonal elements of A

Remarkably A remains sparse

Laplacian, L = 20

AT
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Reordering

Nested dissection, (George 1973): better Cholesky
factors
■ S = L4, t = L6 in 3D
■ S = L2 log L, t = L3 in 2D

Up to L = 120 on a workstation in about 15 minutes.
Limited by main memory.

M

AT
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Non-Additivity of Interactions

Thermal interactions in complicated
3D geometry
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Quantum, non-retarded
Start with explicit model of dipoles, path integral quantization,
0 < τ < β

L(iτ) =
ρ(r)

2

(
dP

dτ

)2

+ Up

Up =
(

E

︷ ︸︸ ︷

D − P)2

2
+

P2

2χ

Again (constrained) Gaussian integrals- determinants
Find

Z =
∏

n

Z(ǫ(ωn))

Product over Matsubara frequencies. Need O(50) frequencies
for ǫ(0) = 5, ~ω0/kT = 10. O(15) frequencies for T = 0.
Valid up to 20nm



- p. 18/25

Quantum retarded

Need to evaluate larger determinants
∣
∣
∣
∣

ω2ǫ(r, iω)

~2c2
) + curl curl

∣
∣
∣
∣

3V × 3V matrix, rather than V × V Limited to L < 70. Comes
from the wave equation for the vector potential

(
−ω2ǫA

c2
+ curl curl A

)

= J

in temporal gauge.
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Numerical results

■ Exploration of geometries
■ Are discretization errors unacceptable?
■ How fine a discretization can we evaluate?
■ Simple spectra- not limiting
■ Simulations with 1 Dell-week.
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Torque measurements

■ Interaction between two disks,
■ Test of self energy subtractions
■ Box size L = 63, diameter

D = 42

■ Matrix dimensions 7500002
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Interaction between 2 particles, 2-dimensions
Test of frequency integration, L = 2000.
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■ Non-retarded U ∼ 1/r4 (Solid blue line)
■ Retarded U ∼ 1/r5

■ ǫ(iω) = 1 + χ/(1 + ω2/∆2)

■ Cross-over determined by c/∆
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Rough surface, Retarded

■ L = 1000, random walk interface.
Average over 1000 realizations

■ Flat surface U ∼ 1/r3.
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cf. Li and Kardar (1991)
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Exotic dielectric media, water ǫ(q)

Figure 1: MD- Bopp, Kornyshev, Sutmann, 1995
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Non-local dielectrics

How to produce ǫ(k)
■ Constraint

div D = 0

■ Field energy, (Landau-Ginzburg) for polarization P

U =
(

E

︷ ︸︸ ︷

D − P)2

2
+

P2

2χ
+

κp

2
(div P)2

Water requires κp < 0 (Cf. Ice models)
“Hydrophobic” interactions in nano length scales
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Conclusions

■ O(N) Monte-Carlo algorithm for Coulomb interactions
■ Inhomogeneous ǫ(r)

■ Automatically adds in classical fluctuation interactions
■ Molecular dynamics implementations also available
■ Sparse matrix methods allow detailed study of complicated

geometries
■ 200 lines in matlab
■ Can also exploit 2+1 dimensions/uniform blocks
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