Constrained electrodynamics- numerics and interactions

A.C. Maggs, Samuela Pasquali

CNRS and ESPCI, Paris

Summary

Algorithms

Faster/simpler codes for electrostatics

Thermodynamics of Electric fields

Partition function of electric field

Fluctuations and interactions

Classical fluctuations in dielectrics- numerical methods

Quantum formulation

non-retarded retarded

Local Algorithm

Vincent Rossetto (Grenoble), Joerg Rottler (UBC)
The charges *q* live on the vertices

• E_{ij} field on the links of a cubic lattice.

When a particle, moves from 1 to 2 then *E*₁₂ → *E*₁₂ - *q*Metropolis rule

$$U = \frac{1}{2} \sum_{\langle ij \rangle} E_{ij}^2$$

Never calculate the potential

Constrained Monte-Carlo: Particle Motion

Flux interpretation of Gauss' law $\int \mathbf{E} \cdot d\mathbf{S} = q$

Gauss constraint is satisfied dynamically (conserved)

Constrained Minimization of Energy

$$U = \frac{\epsilon_0}{2} \int \mathbf{E}^2 \, \mathrm{d}^3 \mathbf{r}$$

with $\operatorname{div} \mathbf{E} = \rho/\epsilon_0$ Lagrange multiplier to minimize:

$$\mathcal{A} = \int \frac{\epsilon_0}{2} \mathbf{E}^2 - \phi(\epsilon_0 \text{div } \mathbf{E} - \rho) \, d^3 \mathbf{r}$$

leading to

$$\begin{split} \delta \mathbf{E} : \quad \mathbf{E} &= -\nabla \phi_p \\ \nabla^2 \phi_p &= -\rho/\epsilon_0 \end{split}$$

Constrained Statistical Mechanics

Define:

$$Z(\mathbf{r}) = \int \delta(\operatorname{div} \mathbf{E} - \rho/\epsilon_0) \ \mathcal{D}\mathbf{E} \ \exp\left(-\beta \frac{\epsilon_0}{2} \int \mathbf{E}^2 \ \mathrm{d}^3 \mathbf{r}\right)$$

Gaussian, but constrained, sample with two MC moves.

Lattice Boltzmann hydrodynamics Dirac quantization in field theory

Inhomogeneous Media

The basic trick generalizes using the electric displacement

div
$$\mathbf{D} = \rho$$

 $U = \int \frac{\mathbf{D}^2}{2\epsilon(\mathbf{r})} d^3\mathbf{r}$

Minimize:- generalized Poisson equation is

div
$$(\epsilon(\mathbf{r})\nabla\phi) = -\rho$$

Statistical mechanics when $\rho = 0$

$$Z_{fluct} = \int \mathcal{D}\mathbf{D} \,\delta(\operatorname{div} \mathbf{D}) \exp\left(-\beta \int \frac{\mathbf{D}^2}{2\epsilon(\mathbf{r})} \,\mathrm{d}^3\mathbf{r}\right)$$

Partition function for electromagnetic field

Fluctuation potentials

A pair of dipoles ${\bf p}$

$$V_{fluct} \sim -\frac{\mathbf{p}^4}{kTr^6}$$

NOT quantum: Keesom/Debye potential Algorithm sums these potentials, classical Lifshitz Interaction between two plates

Measured with thermodynamic integration

Numerical Modeling

Typical atomistic code

- Lennard-Jones, Coulomb
- Neglect collective multibody interactions
- Neglects screening of Keesom
- Quantum chemistry usually neglects all long range interactions

Numerical methods

Large amounts of analytic work in special geometries

- MC algorithm includes fluctuation potentials
- measuring them is difficult- statistics, asymptotics
- would like tool to evaluate interaction in general geometry
- importance of multi-body interactions
- "difficult geometries"- points, rough surfaces where perturbation theory might not work

Parallel work by Steven Johnson et al. MIT.

Transformation of partition function

Impose constraint using multiplier,

$$A = \frac{\mathbf{D^2}}{2\epsilon(\mathbf{r})} - i\phi(\operatorname{div} \mathbf{D})$$

Integrate over D, being careful with zero modes:

$$Z(\epsilon) = \int \mathcal{D}\phi \, \exp\left(-\beta \int \epsilon(\mathbf{r}) \frac{(\nabla \phi)^2}{2} \, \mathrm{d}^3 \mathbf{r}\right)$$

avoiding integral over q = 0.

$$F \sim k_B T \operatorname{Tr}' \log (-\operatorname{div} \epsilon \operatorname{grad})$$

How can we study this determinant numerically?

Evaluating the determinant

Discretize- finite difference $(\text{grad } \phi) \rightarrow \phi_i - \phi_j$

- Direct methods
- Iterative methods:- Lanczos
- Factorization
- Reordering+Factorization

Failures

Direct Methods

- In 3D $V = L^3$ sites
- V^3 operations required to diagonalize
- Effort L^9
- L = 10 in about 1 second, L = 20 takes 20 minutes
- Memory requirements L^6 , hit wall again at L = 20, (500MB)

Lanczos

widely used in physics Good for a few EV, gives spurious results if one looks for all EV

Factorization

Cholesky for positive definite matrix

 $M = AA^T$

A lower triangular

Determinant from diagonal elements of A

Remarkably A remains sparse

Laplacian, L = 20

Reordering

Nested dissection, (George 1973): better Cholesky factors

- $S = L^4$, $t = L^6$ in 3D
- $S = L^2 \log L$, $t = L^3$ in 2D

Up to L = 120 on a workstation in about 15 minutes. Limited by main memory.

3000

nz = 488275

4000

5000

Non-Additivity of Interactions

Compare with proximity force approximation

Quantum, non-retarded

Start with explicit model of dipoles, path integral quantization, $0 < \tau < \beta$

$$\mathcal{L}(i\tau) = \frac{\rho(\mathbf{r})}{2} \left(\frac{d\mathbf{P}}{d\tau}\right)^2 + U_p$$

$$U_p = \frac{(\mathbf{\overline{D}} - \mathbf{P})^2}{2} + \frac{\mathbf{P}^2}{2\chi}$$

Again (constrained) Gaussian integrals- determinants Find

$$Z = \prod_{n} Z(\epsilon(\omega_n))$$

Product over Matsubara frequencies. Need O(50) frequencies for $\epsilon(0) = 5$, $\hbar\omega_0/kT = 10$. O(15) frequencies for T = 0. Valid up to 20nm

Quantum retarded

Need to evaluate larger determinants

$$\frac{\omega^2 \epsilon(\mathbf{r}, i\omega)}{\hbar^2 c^2}) + \operatorname{curl} \operatorname{curl} \bigg|$$

 $3V \times 3V$ matrix, rather than $V \times V$ Limited to L < 70. Comes from the wave equation for the vector potential

$$\left(\frac{-\omega^2 \epsilon \mathbf{A}}{c^2} + \operatorname{curl} \operatorname{curl} \mathbf{A}\right) = \mathbf{J}$$

in temporal gauge.

Numerical results

- Exploration of geometries
- Are discretization errors unacceptable?
- How fine a discretization can we evaluate?
- Simple spectra- not limiting
- Simulations with 1 Dell-week.

Torque measurements

- Interaction between two disks,
- Test of self energy subtractions
- Box size L = 63, diameter D = 42
- Matrix dimensions 750000²

Fully retarded regime with $\epsilon(\omega)$ =const.

Interaction between 2 particles, 2-dimensions

Test of frequency integration, L = 2000.

- Non-retarded $U \sim 1/r^4$ (Solid blue line)
- \blacksquare Retarded $U \sim 1/r^5$
- $\blacksquare \ \epsilon(i\omega) = 1 + \chi/(1+\omega^2/\Delta^2)$
- \blacksquare Cross-over determined by c/Δ

Rough surface, Retarded

- L = 1000, random walk interface.
 Average over 1000 realizations
- Flat surface $U \sim 1/r^3$.

Corrections to interaction $\delta U \sim 1/r^4$.

cf. Li and Kardar (1991)

Exotic dielectric media, water $\epsilon(q)$

Figure 1: MD-Bopp, Kornyshev, Sutmann, 1995

Non-local dielectrics

How to produce $\epsilon(k)$ Constraint

div $\mathbf{D} = 0$

Field energy, (Landau-Ginzburg) for polarization P

$$U = \frac{(\mathbf{\overline{D}} - \mathbf{\overline{P}})^2}{2} + \frac{\mathbf{P}^2}{2\chi} + \frac{\kappa_p}{2} (\operatorname{div} \mathbf{P})^2$$

Water requires $\kappa_p < 0$ (Cf. Ice models) "Hydrophobic" interactions in nano length scales

Conclusions

- O(N) Monte-Carlo algorithm for Coulomb interactions
- Inhomogeneous $\epsilon(\mathbf{r})$
- Automatically adds in classical fluctuation interactions
- Molecular dynamics implementations also available
- Sparse matrix methods allow detailed study of complicated geometries
- 200 lines in matlab
- Can also exploit 2+1 dimensions/uniform blocks